Targeted Delivery of Plasminogen Activators for Thrombolytic Therapy: An Integrative Evaluation

Yunn-Hwa Ma, Chih-Hsin Liu, Yueh Liang, Jyh-Ping Chen, Tony Wu, Yunn-Hwa Ma, Chih-Hsin Liu, Yueh Liang, Jyh-Ping Chen, Tony Wu

Abstract

In thrombolytic therapy, plasminogen activators (PAs) are still the only group of drug approved to induce thrombolysis, and therefore, critical for treatment of arterial thromboembolism, such as stroke, in the acute phase. Functionalized nanocomposites have attracted great attention in achieving target thrombolysis due to favorable characteristics associated with the size, surface properties and targeting effects. Many PA-conjugated nanocomposites have been prepared and characterized, and some of them has been demonstrated with therapeutic efficacy in animal models. To facilitate future translation, this paper reviews recent progress of this area, especially focus on how to achieve reproducible thrombolysis efficacy in vivo.

Keywords: drug delivery; nanoparticles; plasminogen activators; thrombolysis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic diagram of proposed steps in development of therapeutic nanocomposites for target thrombolysis. Arrows indicate sequences or feedback consideration in the development. This review focuses on the pharmacological evaluation of the nanocomposites, as included in the red area.
Figure 2
Figure 2
Illustration of thrombolytic nanocomposites demonstrating pharmacological efficacy in a disease model in vivo. Both immobilized and protected plasminogen activator in the polymeric (upper panel) and liposomal (lower panel) nanocomposites can be used.
Figure 3
Figure 3
Schematic diagram of the rat iliac thromboembolic model and the magnetic guiding strategy. A preformed clot may be introduced from the right iliac cannula and lodged in the left iliac artery; FeCl3-induced thrombosis can be triggered in the left iliac artery. A mobile magnetic guiding strategy has been demonstrated crucial to achieve thrombolytic efficacy of rtPA nanocomposites administered from the right iliac artery (modified from [24]).
Figure 4
Figure 4
Target thrombolysis induced by immobilized rtPA plus heparin under magnetic guiding in a FeCl3 thrombosis model of the rat. (A) illustrates representative effects of MNP-rtPA plus heparin on the mean iliac artery blood flow (MIBF). FeCl3-induced thrombosis (arrow head) reduced left iliac blood flow to below 1 mL/min; MNP-rtPA (0.2 mg/kg) with heparin (500 mg/kg plus 500 IU/kg.hr for one hr) was administered from the right iliac artery, as indicated by the arrow. (B) Tissue perfusion of hind limb (HLP) and cremaster muscle (CP) was measured by laser speckle contrast imaging; the signals acquired in the areas are denoted as in the squares. Mean arterial pressure (MAP; C), mean iliac blood flow (MIBF; D), HLP (E) and CP (F) were measured with time. FeCl3 (20%) filter paper was placed on the left iliac artery at time 0. MNP-rtPA with heparin (H; 500 mg/kg plus 500 IU/kg.h for one hour; n = 5) or equivalent MNP with heparin was administered from the right iliac artery 5 min after complete occlusion. Values were presented as mean ± SE. *, p < 0.05 compared with the corresponding control group. †, p < 0.05 compared with the corresponding MNP-rtPA group.

References

    1. Anderson J.L., Halperin J.L., Albert N.M., Bozkurt B., Brindis R.G., Curtis L.H., DeMets D., Guyton R.A., Hochman J.S., Kovacs R.J., et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:1425–1443. doi: 10.1161/CIR.0b013e31828b82aa.
    1. Powers W.J., Derdeyn C.P., Biller J., Coffey C.S., Hoh B.L., Jauch E.C., Johnston K.C., Johnston S.C., Khalessi A.A., Kidwell C.S., et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:3020–3035.
    1. Colucci M., Paramo J.A., Collen D. Inhibition of one-chain and two-chain forms of human tissue-type plasminogen activator by the fast-acting inhibitor of plasminogen activator in vitro and in vivo. J. Lab. Clin. Med. 1986;108:44–52.
    1. Zenhnder J.L. Drugs used in disorders of coagulation. In: Katzung B.G., editor. Basic & Clinical Pharmacology. 14th ed. McGraw Hill; New York, NY, USA: 2018. pp. 608–625.
    1. Liu S., Feng X., Jin R., Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin. Drug Deliv. 2018;15:173–184. doi: 10.1080/17425247.2018.1384464.
    1. Huang T., Li N., Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J. Pharm. Sci. 2019;14:233–247. doi: 10.1016/j.ajps.2018.12.004.
    1. Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Del. Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037.
    1. Silva A.K.A., Luciani N., Gazeau F., Aubertin K., Bonneau S., Chauvierre C., Letourneur D., Wilhelm C. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine. 2015;11:645–655. doi: 10.1016/j.nano.2014.11.009.
    1. Patsula V., Tulinska J., Trachtova S., Kuricova M., Liskova A., Spanova A., Ciampor F., Vavra I., Rittich B., Ursinyova M., et al. Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology. 2019;13:510–526. doi: 10.1080/17435390.2018.1555624.
    1. Kandadai M.A., Mukherjee P., Shekhar H., Shaw G.J., Papautsky I., Holland C.K. Microfluidic manufacture of rt-PA -loaded echogenic liposomes. Biomed. Microdevic. 2016;18:48. doi: 10.1007/s10544-016-0072-0.
    1. Liu C.H., Hsu H.L., Chen J.P., Wu T., Ma Y.H. Thrombolysis induced by intravenous administration of plasminogen activator in magnetoliposomes: Dual targeting by magnetic and thermal manipulation. Nanomedicine. 2019;20:101992. doi: 10.1016/j.nano.2019.03.014.
    1. Ma Y.H., Wu S.Y., Wu T., Chang Y.J., Hua M.Y., Chen J.P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–3351. doi: 10.1016/j.biomaterials.2009.02.034.
    1. Friedrich R.P., Zaloga J., Schreiber E., Toth I.Y., Tombacz E., Lyer S., Alexiou C. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle-covalent versus adsorptive approach. Nanoscale Res. Lett. 2016;11:297. doi: 10.1186/s11671-016-1521-7.
    1. Yang H.W., Hua M.Y., Lin K.J., Wey S.P., Tsai R.Y., Wu S.Y., Lu Y.C., Liu H.L., Wu T., Ma Y.H. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis. Int. J. Nanomed. 2012;7:5159–5173.
    1. Prilepskii A.Y., Fakhardo A.F., Drozdov A.S., Vinogradov V.V., Dudanov I.P., Shtil A.A., Bel’Tyukov P.P., Shibeko A.M., Koltsova E.M., Nechipurenko D.Y., et al. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: Synthesis and preclinical evaluation. ACS Appl. Mater. Interfaces. 2018;10:36764–36775. doi: 10.1021/acsami.8b14790.
    1. Heeremans J.L.M., Prevost R., Bekkers M.E.A., Los P., Emeis J.J., Kluft C., Crommelin D.J.A. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: A comparison with free t-PA. Thromb. Haemost. 1995;73:488–494. doi: 10.1055/s-0038-1653802.
    1. Zhang N., Li C., Zhou D., Ding C., Jin Y., Tian Q., Meng X., Pu K., Zhu Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 2018;70:227–236. doi: 10.1016/j.actbio.2018.01.038.
    1. Vaidya B., Nayak M.K., Dash D., Agrawal G.P., Vyas S.P. Development and characterization of highly selective target-sensitive liposomes for the delivery of streptokinase: In vitro/in vivo studies. Drug Deliv. 2016;23:801–807. doi: 10.3109/10717544.2014.916770.
    1. Laing S.T., Moody M.R., Kim H., Smulevitz B., Huang S.L., Holland C.K., McPherson D.D., Klegerman M.E. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb. Res. 2012;130:629–635. doi: 10.1016/j.thromres.2011.11.010.
    1. Absar S., Nahar K., Kwon Y.M., Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm. Res. 2013;30:1663–1676. doi: 10.1007/s11095-013-1011-x.
    1. Colasuonno M., Palange A.L., Aid R., Ferreira M., Mollica H., Palomba R., Emdin M., Del Sette M., Chauvierre C., Letourneur D., et al. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano. 2018;12:12224–12237. doi: 10.1021/acsnano.8b06021.
    1. Chen J.P., Liu C.H., Hsu H.L., Wu T., Lu Y.J., Ma Y.H. Magnetically controlled release of recombinant tissue plasminogen activator from chitosan nanocomposites for targeted thrombolysis. J. Mater. Chem. B. 2016;4:2578–2590. doi: 10.1039/C5TB02579F.
    1. Pawlowski C.L., Li W., Sun M., Ravichandran K., Hickman D., Kos C., Kaur G., Sen Gupta A. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials. 2017;128:94–108. doi: 10.1016/j.biomaterials.2017.03.012.
    1. Ma Y.H., Hsu Y.W., Chang Y.J., Hua M.Y., Chen J.P., Wu T. Intra-arterial application of magnetic nanoparticle for targeted thrombolytic therapy: A rat embolic model. J. Magn. Magn. Mater. 2007;311:342–346. doi: 10.1016/j.jmmm.2006.10.1204.
    1. Chiu C.Y., Chung T.W., Chen S.Y., Ma Y.H. Effects of PEGylation on capture of dextran-coated magnetic nanoparticles in microcirculation. Int. J. Nanomed. 2019;14:4767–4780. doi: 10.2147/IJN.S204844.
    1. Hu J., Huang S., Zhu L., Huang W., Zhao Y., Jin K., ZhuGe Q. Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl. Mater. Interfaces. 2018;10:32988–32997. doi: 10.1021/acsami.8b09423.
    1. Runge M.S., Bode C., Matsueda G.R., Haber E. Antibody-enhanced thrombolysis: Targeting of tissue plasminogen activator in vivo. Proc. Natl. Acad. Sci. USA. 1987;84:7659–7662. doi: 10.1073/pnas.84.21.7659.
    1. Ghebouli R., Loyau S., Maire M., Saboural P., Collet J.P., Jandrot-Perrus M., Letourneur D., Chaubet F., Michel J.B. Amino-fucoidan as a vector for rtPA-induced fibrinolysis in experimental thrombotic events. Thromb. Haemost. 2018;118:42–53. doi: 10.1160/TH17-02-0132.
    1. Wang X., Palasubramaniam J., Gkanatsas Y., Hohmann J.D., Westein E., Kanojia R., Alt K., Huang D., Jia F., Ahrens I., et al. Towards effective and safe thrombolysis and thromboprophylaxis: Preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ. Res. 2014;114:1083–1093. doi: 10.1161/CIRCRESAHA.114.302514.
    1. McCarthy J.R., Sazonova I.Y., Erdem S.S., Hara T., Thompson B.D., Patel P., Botnaru I., Lin C.P., Reed G.L., Weissleder R., et al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine (Lond) 2012;7:1017–1028. doi: 10.2217/nnm.11.179.
    1. Seo J., Al-Hilal T.A., Jee J.G., Kim Y.L., Kim H.J., Lee B.H., Kim S., Kim I.S. A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots. Nanomedicine. 2018;14:633–642. doi: 10.1016/j.nano.2017.12.022.
    1. Korin N., Kanapathipillai M., Matthews B.D., Crescente M., Brill A., Mammoto T., Ghosh K., Jurek S., Bencherif S.A., Bhatta D., et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738–742. doi: 10.1126/science.1217815.
    1. Saxer T., Zumbuehl A., Müller B. The use of shear stress for targeted drug delivery. Cardiovasc. Res. 2013;99:328–333. doi: 10.1093/cvr/cvt102.
    1. Chen J.P., Yang P.C., Ma Y.H., Lu Y.J. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym. 2011;84:364–372. doi: 10.1016/j.carbpol.2010.11.052.
    1. Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J. Exp. Med. 1978;148:223–234. doi: 10.1084/jem.148.1.223.
    1. Hartert H. Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin. Wochenschr. 1948;26:577–583. doi: 10.1007/BF01697545.
    1. Luddington R.J. Thrombelastography/thromboelastometry. Clin. Lab. Haematol. 2005;27:81–90. doi: 10.1111/j.1365-2257.2005.00681.x.
    1. Chapin J.C., Hajjar K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24. doi: 10.1016/j.blre.2014.09.003.
    1. Polyak B., Cordovez B. How can we predict behavior of nanoparticles in vivo? Nanomedicine (Lond) 2016;11:189–192. doi: 10.2217/nnm.15.192.
    1. Bi F., Zhang J., Su Y., Tang Y.-C., Liu J.-N. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials. 2009;30:5125–5130. doi: 10.1016/j.biomaterials.2009.06.006.
    1. Kawata H., Uesugi Y., Soeda T., Takemoto Y., Sung J.-H., Umaki K., Kato K., Ogiwara K., Nogami K., Ishigami K., et al. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J Am Coll Cardiol. 2012;60:2550–2557. doi: 10.1016/j.jacc.2012.08.1008.
    1. Ma Y.H., Huang C.W., Wen C.J., Lu Y.C., Wey S.P., Wun T.C. Passivating injured endothelium with kinexins in thrombolytic therapy. Thromb. Haemost. 2018;118:90–102. doi: 10.1160/TH17-05-0330.
    1. Dubois C., Panicot-Dubois L., Gainor J.F., Furie B.C., Furie B. Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J. Clin. Invest. 2007;117:953–960. doi: 10.1172/JCI30537.
    1. Hechler B., Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb. Haemost. 2011;105:S3–S12. doi: 10.1160/THS10-11-0730.
    1. McGrath J.C., Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): New requirements for publication in BJP. Br. J. Pharmacol. 2015;172:3189–3193. doi: 10.1111/bph.12955.

Source: PubMed

3
Předplatit