Health maintenance through home-based interventions for community-dwelling older people with sarcopenia during and after the COVID-19 pandemic: A systematic review and meta-analysis

Meng-Li Li, Patrick Pui-Kin Kor, Yu-Fang Sui, Justina Yat-Wa Liu, Meng-Li Li, Patrick Pui-Kin Kor, Yu-Fang Sui, Justina Yat-Wa Liu

Abstract

Background: The COVID-19 pandemic has greatly impacted people's lifestyles and changed the delivery of health interventions, especially interventions for community-dwelling older people with sarcopenia.

Objective: To summarize the components and explore the effectiveness of home-based interventions for improving sarcopenia and other health-related outcomes among community-dwelling older people with sarcopenia.

Design: Systematic review and meta-analysis.

Methods: The Cochrane Library, Scopus, EMBASE, Web of Science, CINAHL, Medline (via PubMed), and PsycINFO were searched for relevant papers published from January 1, 2010 to March 29, 2022. Only papers written in English were included. The modified version of Cochrane's risk-of-bias tool was used to assess the risks of bias in the included studies. The template for intervention description and replication checklist was used to summarize the intervention components. The mean difference (MD) or standard mean difference with a 95 % confidence interval (CI) was used to determine the effect size of studies using the same or different measuring methods. Random-effects models were in meta-analyses to pool the effects of home-based interventions on the included outcomes.

Results: After detailed screening and exclusion, 11 randomized controlled trials including 1136 older people with sarcopenia were included in our analyses. Three categories of home-based interventions were identified: exercise interventions, nutritional interventions, and combined exercise and nutritional interventions. The overall analysis of the outcomes (e.g., appendicular skeletal muscle mass index, lean mass, body fat mass, handgrip strength, and gait speed), showed that the effects of home-based exercise interventions were inconclusive. Compared with passive controls, home-based exercise interventions significantly improved knee extension strength (MD = 0.56 kg, 95 % CI: 0.09, 1.03, p = 0.020) and reduced the time required to complete the Timed Up and Go Test (MD = -1.41 s, 95 % CI: -2.28, -0.54, p = 0.001). Home-based nutritional interventions were effective in improving appendicular skeletal muscle mass (MD = 0.25 kg, 95 % CI: 0.02, 0.49, p = 0.030), gait speed (MD = 0.06 m/s, 95 % CI: 0.03, 0.09, p = 0.0001), and quality of life in terms of both the physical component summary (MD = 13.54, 95 % CI: 0.73, 26.34, p = 0.040) and mental component summary scores (MD = 8.69, 95 % CI: 2.98, 14.41, p = 0.003).

Conclusion: Home-based exercise interventions have the potential to improve muscle strength and physical function, while home-based nutritional interventions are effective in increasing muscle mass, physical function, and quality of life. Both of these can be applied at home during and after the COVID-19 pandemic to alleviate sarcopenia and improve health-related outcomes in community-dwelling older people.

Keywords: COVID-19; Exercise; Home-based; Nutrition; Sarcopenia.

Conflict of interest statement

Declaration of competing interest There are no conflicts of interest to declare.

Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
PRISMA Flowchart showing the literature search and study selection.
Fig. 2
Fig. 2
Risk of bias summary of the included studies.
Fig. 3
Fig. 3
Overall effect of home-based exercise on body composition: SMI (A), lean mass (B), body fat mass (C), BMI (D).
Fig. 4
Fig. 4
Overall effect of home-based exercise on muscle strength: handgrip strength (A) and knee extension strength (B).
Fig. 5
Fig. 5
Overall effect of home-based exercise on physical function: gait speed (A), TUGT (B), chair stand (C) and others: quality of life (D).
Fig. 6
Fig. 6
Overall effect of home-based nutritional interventions on body composition: SMI (A), lean mass (B), ASM (C), body fat mass (D) and BMI (E).
Fig. 7
Fig. 7
Overall effect of home-based nutritional interventions on handgrip strength.
Fig. 8
Fig. 8
Overall effect of home-based nutritional interventions on gait speed (A) and quality of life, PCS (B) and MCS (C).

References

    1. Alemán-Mateo H., Macías L., Esparza-Romero J., Astiazaran-García H., Blancas A.L. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderly men: evidence from a randomized clinical trial using a protein-rich food. Clin. Interv. Aging. 2012;7:225–234. doi: 10.2147/cia.S32356.
    1. Ammar A., Brach M., Trabelsi K., Chtourou H., Boukhris O., Masmoudi L., Bouaziz B., Bentlage E., How D., Ahmed M., Müller P., Müller N., Aloui A., Hammouda O., Paineiras-Domingos L.L., Braakman-Jansen A., Wrede C., Bastoni S., Pernambuco C.S., Hoekelmann A. Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey. Nutrients. 2020;12(6):1583–1596. doi: 10.3390/nu12061583.
    1. Anderson L., Sharp G.A., Norton R.J., Dalal H., Dean S.G., Jolly K., Cowie A., Zawada A., Taylor R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst. Rev. 2017;6 doi: 10.1002/14651858.CD007130.pub4.
    1. Ashworth N.L., Chad K.E., Harrison E.L., Reeder B.A., Marshall S.C. Home versus center based physical activity programs in older adults. Cochrane Database Syst. Rev. 2005;2005(1) doi: 10.1002/14651858.CD004017.pub2.
    1. Bao W., Sun Y., Zhang T., Zou L., Wu X., Wang D., Chen Z. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: a systematic review and meta-analysis. Aging Dis. 2020;11(4):863–873. doi: 10.14336/ad.2019.1012.
    1. Beaudart C., Zaaria M., Pasleau F., Reginster J.Y., Bruyère O. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One. 2017;12(1) doi: 10.1371/journal.pone.0169548.
    1. Björkman M.P., Suominen M.H., Kautiainen H., Jyväkorpi S.K., Finne-Soveri H.U., Strandberg T.E., Pitkälä K.H., Tilvis R.S. Effect of protein supplementation on physical performance in older people with sarcopenia–a randomized controlled trial [Article] J. Am. Med. Dir. Assoc. 2020;21(2):226–232. doi: 10.1016/j.jamda.2019.09.006. e221.
    1. Bo Y., Liu C., Ji Z., Yang R., An Q., Zhang X., You J., Duan D., Sun Y., Zhu Y., Cui H., Lu Q. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: a double-blind randomized controlled trial [Article] Clin. Nutr. 2019;38(1):159–164. doi: 10.1016/j.clnu.2017.12.020.
    1. Bruyère O., Beaudart C., Ethgen O., Reginster J.Y., Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas. 2019;119:61–69. doi: 10.1016/j.maturitas.2018.11.003.
    1. Cao L., Morley J.E. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J. Am. Med. Dir. Assoc. 2016;17(8):675–677. doi: 10.1016/j.jamda.2016.06.001.
    1. Chaabene H., Prieske O., Herz M., Moran J., Höhne J., Kliegl R., Ramirez-Campillo R., Behm D.G., Hortobágyi T., Granacher U. Home-based exercise programmes improve physical fitness of healthy older adults: a PRISMA-compliant systematic review and meta-analysis with relevance for COVID-19. Ageing Res. Rev. 2021;67 doi: 10.1016/j.arr.2021.101265.
    1. Chang K.V., Hsu T.H., Wu W.T., Huang K.C., Han D.S. Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing. 2017;46(5):738–746. doi: 10.1093/ageing/afx094.
    1. Chang K.V., Wu W.T., Huang K.C., Han D.S. Effectiveness of early versus delayed exercise and nutritional intervention on segmental body composition of sarcopenic elders - a randomized controlled trial. Clin. Nutr. 2021;40(3):1052–1059. doi: 10.1016/j.clnu.2020.06.037.
    1. Chen L.-K., Woo J., Assantachai P., Auyeung T.-W., Chou M.-Y., Iijima K., Jang H.C., Kang L., Kim M., Kim S., Kojima T., Kuzuya M., Lee J.S.W., Lee S.Y., Lee W.-J., Lee Y., Liang C.-K., Lim J.-Y., Lim W.S., Arai H. Asian working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020;21(3):300–307. doi: 10.1016/j.jamda.2019.12.012. e2.
    1. Chen N., He X., Feng Y., Ainsworth B.E., Liu Y. Effects of resistance training in healthy older people with sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Eur. Rev. Aging Phys. Act. 2021;18(1):23. doi: 10.1186/s11556-021-00277-7.
    1. Clegg A.P., Barber S.E., Young J.B., Forster A., Iliffe S.J. Do home-based exercise interventions improve outcomes for frail older people? Findings from a systematic review. Rev. Clin. Gerontol. 2012;22(1):68–78. doi: 10.1017/s0959259811000165.
    1. Cochrane Collaboration Review Manager (RevMan). [5.3.5] 2019.
    1. Cramer J.T., Cruz-Jentoft A.J., Landi F., Hickson M., Zamboni M., Pereira S.L., Hustead D.S., Mustad V.A. Impacts of High-Protein Oral Nutritional Supplements Among Malnourished Men and Women with Sarcopenia: A Multicenter, Randomized, Double-Blinded, Controlled Trial [Article] J. Am. Med. Dir. Assoc. 2016;17(11):1044–1055. doi: 10.1016/j.jamda.2016.08.009.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.-P., Rolland Y., Schneider S.M., Topinková E., Vandewoude M., Zamboni M. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., Schneider S.M., Sieber C.C., Topinkova E., Vandewoude M., Visser M., Zamboni M., Writing Group for the European Working Group on Sarcopenia in Older P., the Extended Group for E. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Cruz-Jentoft A.J., Sayer A.A. Sarcopenia. Lancet (London, England) 2019;393(10191):2636–2646. doi: 10.1016/S0140-6736(19)31138-9.
    1. Dorresteijn T.A., Rixt Zijlstra G.A., Van Eijs Y.J., Vlaeyen J.W., Kempen G.I. Older people's preferences regarding programme formats for managing concerns about falls. Age Ageing. 2012;41(4):474–481.
    1. Essery R., Geraghty A.W., Kirby S., Yardley L. Predictors of adherence to home-based physical therapies: a systematic review. Disabil. Rehabil. 2017;39(6):519–534. doi: 10.3109/09638288.2016.1153160.
    1. Farrance C., Tsofliou F., Clark C. Adherence to community based group exercise interventions for older people: a mixed-methods systematic review. Prev. Med. 2016;87:155–166. doi: 10.1016/j.ypmed.2016.02.037.
    1. Gkekas N.K., Anagnostis P., Paraschou V., Stamiris D., Dellis S., Kenanidis E., Potoupnis M., Tsiridis E., Goulis D.G. The effect of vitamin D plus protein supplementation on sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Maturitas. 2021;145:56–63. doi: 10.1016/j.maturitas.2021.01.002.
    1. Hale-Gallardo J., Kreider C.M., Castañeda G., LeBeau K., Varma D.S., Knecht C., Cowper Ripley D., Jia H. Meeting the needs of rural veterans: a qualitative evaluation of whole health coaches' expanded services and support during COVID-19. Int. J. Environ. Res. Public Health. 2022;19(20) doi: 10.3390/ijerph192013447.
    1. Herrema A.L., Westerman M.J., van Dongen E.J.I., Kudla U., Veltkamp M. Combined protein-rich diet with resistance exercise intervention to counteract sarcopenia: a qualitative study on drivers and barriers of compliance. J. Aging Phys. Act. 2018;26(1):106–113. doi: 10.1123/japa.2017-0126.
    1. Higgins J., Thomas J., Chandler J., Cumpston M., Li T., Page M., Welch V. Cochrane handbook for systematic reviews of interventions version 6.2. 2021.
    1. Hoffmann T.C., Glasziou P.P., Boutron I., Milne R., Perera R., Moher D., Altman D.G., Barbour V., Macdonald H., Johnston M., Lamb S.E., Lamb S.E., Dixon-Woods M., McCulloch P., Wyatt J.C., Chan A.W., Michie S. [Better reporting of interventions: Template for Intervention Description and Replication (TIDieR) checklist and guide] Gesundheitswesen. 2016;78(3):175–188. doi: 10.1055/s-0041-111066.
    1. Hurst C., Robinson S.M., Witham M.D., Dodds R.M., Granic A., Buckland C., De Biase S., Finnegan S., Rochester L., Skelton D.A. Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing. 2022;51(2)
    1. Institute for Health Metrics and Evaluation WHO: At least 17 million people in the WHO European Region experienced long COVID in the first two years of the pandemic; millions may have to live with it for years to come. 2022. Retrieved October 8, 2022 from.
    1. Izquierdo M., Merchant R., Morley J., Anker S., Aprahamian I., Arai H., Aubertin-Leheudre M., Bernabei R., Cadore E., Cesari M. International exercise recommendations in older adults (ICFSR): expert consensus guidelines. J. Nutr. Health Aging. 2021;25(7):824–853.
    1. Kirwan R., McCullough D., Butler T., Perez de Heredia F., Davies I.G., Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020;42(6):1547–1578. doi: 10.1007/s11357-020-00272-3.
    1. Kor P.P.K., Li M.L., Kwok D.K.S., Leung A.Y.M., Lai D.L.L., Liu J.Y.W. Evaluating the effectiveness of a 6-week hybrid mindfulness-based intervention in reducing the stress among caregivers of patients with dementia during COVID-19 pandemic: protocol of a randomized controlled trial. BMC Psychology. 2022;10(1):1–13.
    1. Kreider C.M., Hale-Gallardo J., Kramer J.C., Mburu S., Slamka M.R., Findley K.E., Myers K.J., Romero S. Providers' shift to telerehabilitation at the U.S. Veterans Health Administration during COVID-19: practical applications. Front. Public Health. 2022;10 doi: 10.3389/fpubh.2022.831762.
    1. Kwak J.Y., Kwon K.S. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann. Geriatr. Med. Res. 2019;23(3):98–104. doi: 10.4235/agmr.19.0028.
    1. Landers-Ramos R.Q., Dondero K.R. Exercise and protein supplementation for prevention and treatment of sarcopenia. Curr. Geriatr. Rep. 2019;8(3):202–209. doi: 10.1007/s13670-019-00293-7.
    1. Leidy H.J., Carnell N.S., Mattes R.D., Campbell W.W. Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity (Silver Spring) 2007;15(2):421–429. doi: 10.1038/oby.2007.531.
    1. Li Z., Cui M., Yu K., Zhang X., Li C., Nie X., Wang F. Effects of nutrition supplementation and physical exercise on muscle mass, muscle strength and fat mass among sarcopenic elderly: a randomized controlled trial. Appl. Physiol. Nutr. Metab. 2021;46(5):494–500. doi: 10.1139/apnm-2020-0643.
    1. Lin C.C., Shih M.H., Chen C.D., Yeh S.L. Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: an open-label, parallel-group study. Clin. Nutr. 2021;40(3):1323–1329. doi: 10.1016/j.clnu.2020.08.017.
    1. Lin T.R., Huang X.Y., Hwu C.M. Exercise experiences of older adults with diabetes and sarcopenia: a phenomenological study. Clin. Nurs. Res. 2022;31(2):292–300. doi: 10.1177/10547738211039381.
    1. Lu L., Mao L., Feng Y., Ainsworth B.E., Liu Y., Chen N. Effects of different exercise training modes on muscle strength and physical performance in older people with sarcopenia: a systematic review and meta-analysis. BMC Geriatr. 2021;21(1):708. doi: 10.1186/s12877-021-02642-8.
    1. Malafarina V., Uriz-Otano F., Iniesta R., Gil-Guerrero L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. J. Am. Med. Dir. Assoc. 2013;14(1):10–17. doi: 10.1016/j.jamda.2012.08.001.
    1. Mañas A., Gómez-Redondo P., Valenzuela P.L., Morales J.S., Lucía A., Ara I. Unsupervised home-based resistance training for community-dwelling older adults: a systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021;69 doi: 10.1016/j.arr.2021.101368.
    1. Maruya K., Asakawa Y., Ishibashi H., Fujita H., Arai T., Yamaguchi H. Effect of a simple and adherent home exercise program on the physical function of community dwelling adults sixty years of age and older with pre-sarcopenia or sarcopenia. J. Phys. Ther. Sci. 2016;28(11):3183–3188. doi: 10.1589/jpts.28.3183.
    1. Mayhew A.J., Amog K., Phillips S., Parise G., McNicholas P.D., de Souza R.J., Thabane L., Raina P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. doi: 10.1093/ageing/afy106.
    1. Nakamura K., Yoshida D., Honda T., Hata J., Shibata M., Hirakawa Y., Furuta Y., Kishimoto H., Ohara T., Kitazono T., Nakashima Y., Ninomiya T. Prevalence and mortality of sarcopenia in a community-dwelling older Japanese population: the Hisayama study. J. Epidemiol. 2021;31(5):320–327. doi: 10.2188/jea.JE20190289.
    1. Nasimi N., Sohrabi Z., Dabbaghmanesh M.H., Eskandari M.H., Bedeltavana A., Famouri M., Talezadeh P. A novel fortified dairy product and sarcopenia measures in sarcopenic older adults: a double-blind randomized controlled trial. J. Am. Med. Dir. Assoc. 2021;22(4):809–815. doi: 10.1016/j.jamda.2020.08.035.
    1. Pandya S.P. Yoga education program for older women diagnosed with sarcopenia: a multicity 10-year follow-up experiment [Article] J. Women Aging. 2019;31(5):446–469. doi: 10.1080/08952841.2018.1510245.
    1. Papadopoulou S.K., Tsintavis P., Potsaki P., Papandreou D. Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. A systematic review and meta-analysis. J. Nutr. Health Aging. 2020;24(1):83–90. doi: 10.1007/s12603-019-1267-x.
    1. Peter R.S., Nieters A., Kräusslich H.G., Brockmann S.O., Göpel S., Kindle G., Merle U., Steinacker J.M., Rothenbacher D., Kern W.V. Post-acute sequelae of covid-19 six to 12 months after infection: population based study. BMJ. 2022;379 doi: 10.1136/bmj-2022-071050.
    1. Pinheiro H.A., Cerceau V.R., Pereira L.C., Funghetto S.S., Menezes R.L.D. Nutritional intervention and functional exercises improve depression, loneliness and quality of life in elderly women with sarcopenia: a randomized clinical trial. Fisioterapia Mov. 2020;33 doi: 10.1590/1980-5918.033.ao32.
    1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses The PRISMA statement. Ann. Intern. Med. 2009;151(4):264–269.
    1. Schuch F.B., Bulzing R.A., Meyer J., López-Sánchez G.F., Grabovac I., Willeit P., Vancampfort D., Caperchione C.M., Sadarangani K.P., Werneck A.O., Ward P.B., Tully M., Smith L. Moderate to vigorous physical activity and sedentary behavior changes in self-isolating adults during the COVID-19 pandemic in Brazil: a cross-sectional survey exploring correlates. Sport Sci. Health. 2022;18(1):155–163. doi: 10.1007/s11332-021-00788-x.
    1. Sen E.I., Eyigor S., Dikici Yagli M., Ozcete Z.A., Aydin T., Kesiktas F.N., Aydin F.Y., Vural M., Sahin N., Karan A. Effect of home-based exercise program on physical function and balance in older adults with sarcopenia: a multicenter randomized controlled study. J. Aging Phys. Act. 2021;29(6):1010–1017. doi: 10.1123/japa.2020-0348.
    1. Sepúlveda-Loyola W., Rodríguez-Sánchez I., Pérez-Rodríguez P., Ganz F., Torralba R., Oliveira D.V., Rodríguez-Mañas L. Impact of social isolation due to COVID-19 on health in older people: mental and physical effects and recommendations. J. Nutr. Health Aging. 2020;24(9):938–947. doi: 10.1007/s12603-020-1500-7.
    1. Sterne J.A.C., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.-Y., Corbett M.S., Eldridge S.M., Emberson J.R., Hernán M.A., Hopewell S., Hróbjartsson A., Junqueira D.R., Jüni P., Kirkham J.J., Lasserson T., Li T., Higgins J.P.T. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed.) 2019;366 doi: 10.1136/bmj.l4898.
    1. Thiebaud R.S., Funk M.D., Abe T. Home-based resistance training for older adults: a systematic review. Geriatr Gerontol Int. 2014;14(4):750–757. doi: 10.1111/ggi.12326.
    1. Tsekoura M., Billis E., Tsepis E., Dimitriadis Z., Matzaroglou C., Tyllianakis M., Panagiotopoulos E., Gliatis J. The effects of group and home-based exercise programs in elderly with sarcopenia: a randomized controlled trial. J. Clin. Med. 2018;7(12) doi: 10.3390/jcm7120480.
    1. Van Elswyk M.E., Teo L., Lau C.S., Shanahan C.J. Dietary patterns and the risk of sarcopenia: a systematic review and meta-analysis. Curr. Dev. Nutr. 2022;6(5) doi: 10.1093/cdn/nzac001.
    1. World Health Organization Ageing and health. 2021. Retrieved 11 Octomber 2021 from.
    1. Wu P.Y., Huang K.S., Chen K.M., Chou C.P., Tu Y.K. Exercise, nutrition, and combined exercise and nutrition in older adults with sarcopenia: a systematic review and network meta-analysis. Maturitas. 2021;145:38–48. doi: 10.1016/j.maturitas.2020.12.009.
    1. Yang M., Liu Y., Zuo Y., Tang H. Sarcopenia for predicting falls and hospitalization in community-dwelling older adults: EWGSOP versus EWGSOP2. Sci. Rep. 2019;9(1):17636. doi: 10.1038/s41598-019-53522-6.
    1. Yoshimura Y., Wakabayashi H., Yamada M., Kim H., Harada A., Arai H. Interventions for treating sarcopenia: a systematic review and meta-analysis of randomized controlled studies. J. Am. Med. Dir. Assoc. 2017;18(6) doi: 10.1016/j.jamda.2017.03.019. 553.e551-553.e516.
    1. Zhu Y.Q., Peng N., Zhou M., Liu P.P., Qi X.L., Wang N., Wang G., Wu Z.P. Tai chi and whole-body vibrating therapy in sarcopenic men in advanced old age: a clinical randomized controlled trial. Eur. J. Ageing. 2019;16(3):273–282. doi: 10.1007/s10433-019-00498-x.

Source: PubMed

3
Předplatit