Sources and reservoirs of Staphylococcus capitis NRCS-A inside a NICU

Marine Butin, Yann Dumont, Alice Monteix, Aurane Raphard, Christine Roques, Patricia Martins Simoes, Jean-Charles Picaud, Frédéric Laurent, Marine Butin, Yann Dumont, Alice Monteix, Aurane Raphard, Christine Roques, Patricia Martins Simoes, Jean-Charles Picaud, Frédéric Laurent

Abstract

Background: The methicillin-resistant clone Staphylococcus capitis NRCS-A, involved in sepsis in neonatal intensive care units (NICUs) worldwide, is able to persist and spread in NICUs, suggesting the presence of reservoirs inside each setting. The purpose of the present study was to identify these reservoirs and to investigate the cycle of transmission of NRCS-A in one NICU.

Methods: In a single institution study, NRCS-A was sought in 106 consecutive vaginal samples of pregnant women to identify a potential source of NRCS-A importation into the NICU. Additionally NICU caregivers and environmental including incubators were tested to identify putative secondary reservoirs. Finally, the efficacy of disinfection procedure in the elimination of NRCS-A from incubators was evaluated.

Results: No S. capitis was isolated from vaginal samples of pregnant women. Three of the 21 tested caregivers (14%) carried S. capitis on their hands, but none remain positive after a five-day wash-out period outside NICU. Moreover, the clone NRCS-A persisted during six consecutive weeks in the NICU environment, but none of the sampled sites was constantly contaminated. Finally in our before/after disinfection study, all of 16 incubators were colonized before disinfection and 10 (62%) incubators remained colonized with NRCS-A after the disinfection procedure.

Conclusions: The partial ineffectiveness of incubators' disinfection procedures is responsible for persistence of NRCS-A inside a NICU, and the passive hand contamination of caregivers could be involved in the inter-patient transmission of S. capitis.

Keywords: Environment; Incubators; NRCS-A; Neonatal ICUs; Sepsis; Staphylococcus capitis.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s). 2019.

References

    1. D’mello D, Daley AJ, Rahman MS, Qu Y, Garland S, Pearce C, et al. Vancomycin heteroresistance in bloodstream isolates of Staphylococcus capitis. J Clin Microbiol. 2008;46:3124–3126. doi: 10.1128/JCM.00592-08.
    1. Van Der Zwet WC, Debets-Ossenkopp YJ, Reinders E, Kapi M, Savelkoul PHM, Van Elburg RM, et al. Nosocomial spread of a Staphylococcus capitis strain with heteroresistance to vancomycin in a neonatal intensive care unit. J Clin Microbiol. 2002;40:2520–2525. doi: 10.1128/JCM.40.7.2520-2525.2002.
    1. Cui B, Smooker PM, Rouch DA, Daley AJ, Deighton MA. Differences between two clinical Staphylococcus capitis subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling. J Clin Microbiol. 2013;51:9–14. doi: 10.1128/JCM.05124-11.
    1. Butin M, Rasigade J-P, Martins-Simões P, Meugnier H, Lemriss H, Goering RV, et al. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin Microbiol Infect. 2016;22:46–52. doi: 10.1016/j.cmi.2015.09.008.
    1. Rasigade J-P, Raulin O, Picaud J-C, Tellini C, Bes M, Grando J, et al. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS One. 2012;7:e31548. doi: 10.1371/journal.pone.0031548.
    1. Ben Said M, Hays S, Bonfils M, Jourdes E, Rasigade J-P, Laurent F, et al. Late-onset sepsis due to Staphylococcus capitis ‘neonatalis’ in low-birthweight infants: a new entity? J Hosp Infect. 2016;94:95–98. doi: 10.1016/j.jhin.2016.06.008.
    1. Butin M, Rasigade J-P, Subtil F, Martins-Simões P, Pralong C, Freydière A-M, et al. Vancomycin treatment is a risk factor for vancomycin-nonsusceptible Staphylococcus capitis sepsis in preterm neonates. Clin Microbiol Infect. 2017;23:839–844. doi: 10.1016/j.cmi.2017.03.022.
    1. Hedin G, Rynbäck J, Loré B. New technique to take samples from environmental surfaces using flocked nylon swabs. J Hosp Infect. 2010;75:314–317. doi: 10.1016/j.jhin.2010.02.027.
    1. Butin M, Dumont Y, Rasigade J-P, Martins Simoes P, Hoden L, Picaud J-C, et al. Chromogenic detection procedure for the multidrug-resistant, neonatal sepsis-associated clone Staphylococcus capitis NRCS-A. Diagn Microbiol Infect Dis. 2018;90:81–82. doi: 10.1016/j.diagmicrobio.2017.10.012.
    1. Poyart C, Réglier-Poupet H, Tazi A, Billoët A, Dmytruk N, Bidet P, et al. Invasive group B streptococcal infections in infants, France. Emerg Infect Dis. 2008;14:1647–1649. doi: 10.3201/eid1410.080185.
    1. Golan Y, Doron S, Sullivan B, Snydman DR. Transmission of vancomycin-resistant enterococcus in a neonatal intensive care unit. Pediatr Infect Dis J. 2005;24:566–567. doi: 10.1097/01.inf.0000164762.03930.0a.
    1. Van Der Zwet WC, Parlevliet GA, Savelkoul PH, Stoof J, Kaiser AM, Van Furth AM, et al. Outbreak of Bacillus cereus infections in a neonatal intensive care unit traced to balloons used in manual ventilation. J Clin Microbiol. 2000;38:4131–4136.
    1. Faden HS, Dryja D. Importance of asymptomatic shedding of Clostridium difficile in environmental contamination of a neonatal intensive care unit. Am J Infect Control. 2015;43:887–888. doi: 10.1016/j.ajic.2015.04.187.
    1. Lin D, Ou Q, Lin J, Peng Y, Yao Z. A meta-analysis of the rates of Staphylococcus aureus and methicillin-resistant S aureus contamination on the surfaces of environmental objects that health care workers frequently touch. Am J Infect Control. 2017;45:421–429. doi: 10.1016/j.ajic.2016.11.004.
    1. Cadot L, Bruguiere H, Jumas-Bilak E, Didelot MN, Masnou A, de Barry G, et al. Extended spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak reveals incubators as pathogen reservoir in neonatal care center. Eur J Pediatr. 2019;178:505–513. doi: 10.1007/s00431-019-03323-w.
    1. Gras-Le Guen C, Fournier S, Andre-Richet B, Caillon J, Chamoux C, Espaze E, et al. Almond oil implicated in a Staphylococcus capitis outbreak in a neonatal intensive care unit. J Perinatol. 2007;27:713–717. doi: 10.1038/sj.jp.7211798.
    1. Carter GP, Ussher JE, Da Silva AG, Baines SL, Heffernan H, Riley TV, et al. Genomic analysis of multiresistant Staphylococcus capitis associated with neonatal sepsis. Antimicrob Agents Chemother. 2018;62:e00898–e00818. doi: 10.1128/AAC.00898-18.
    1. Lepainteur M, Royer G, Bourrel AS, Romain O, Duport C, Doucet-Populaire F, et al. Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect. 2013;83:333–336. doi: 10.1016/j.jhin.2012.11.025.
    1. Braux C, Lagier A, Passet-Gros M, Ducki S, Shum J, Andrini P, et al. Maintenance of the neonatology incubators with a steam generator. Hygienes. 2008;XVI:241–247.
    1. Gillespie E, Tabbara L, Scott C, Lovegrove A, Kotsanas D, Stuart RL. Microfiber and steam for a neonatal service: an improved and safe cleaning methodology. Am J Infect Control. 2017;45:98–100. doi: 10.1016/j.ajic.2016.06.041.
    1. Ory J, Cazaban M, Richaud-Morel B, Di Maio M, Dunyach-Remy C, Pantel A, et al. Successful implementation of infection control measure in a neonatal intensive care unit to combat the spread of pathogenic multidrug resistant Staphylococcus capitis. Antimicrob Resist Infect Control. 2019;8:57. doi: 10.1186/s13756-019-0512-8.
    1. Hira V, Sluijter M, Goessens WHF, Ott A, de Groot R, Hermans PWM, et al. Coagulase-negative staphylococcal skin carriage among neonatal intensive care unit personnel: from population to infection. J Clin Microbiol. 2010;48:3876–3881. doi: 10.1128/JCM.00967-10.

Source: PubMed

3
Předplatit