Artificial intelligence in cancer imaging: Clinical challenges and applications

Wenya Linda Bi, Ahmed Hosny, Matthew B Schabath, Maryellen L Giger, Nicolai J Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F Dunn, Raymond H Mak, Rulla M Tamimi, Clare M Tempany, Charles Swanton, Udo Hoffmann, Lawrence H Schwartz, Robert J Gillies, Raymond Y Huang, Hugo J W L Aerts, Wenya Linda Bi, Ahmed Hosny, Matthew B Schabath, Maryellen L Giger, Nicolai J Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F Dunn, Raymond H Mak, Rulla M Tamimi, Clare M Tempany, Charles Swanton, Udo Hoffmann, Lawrence H Schwartz, Robert J Gillies, Raymond Y Huang, Hugo J W L Aerts

Abstract

Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care.

Keywords: artificial intelligence; cancer imaging; clinical challenges; deep learning; radiomics.

© 2019 American Cancer Society.

Figures

Figure 1
Figure 1
Artificial Intelligence Applications in Medical Imaging as Applied to Common Cancers. Artificial intelligence tools can be conceptualized to apply to 3 broad categories of image‐based clinical tasks in oncology: 1) detection of abnormalities; 2) characterization of a suspected lesion by defining its shape or volume, histopathologic diagnosis, stage of disease, or molecular profile; and 3) determination of prognosis or response to treatment over time during monitoring. 2D indicates 2‐dimensional; 3D, 3‐dimensional; CNS, central nervous system.
Figure 2
Figure 2
Potential Enhanced Clinical Workflow With Artificial Intelligence (AI) Interventions. The traditional paradigm for patients with tumors entails initial radiologic diagnosis of a mass lesion, a decision to treat or observe based on clinical factors and patient preference, a definitive histopathologic diagnosis only after obtaining tissue, molecular genotyping in centers with such resources, and determination of clinical outcome only after the passage of time. In contrast, AI‐based interventions offer the potential to augment this clinical workflow and decision making at different stages of oncological care. Continuous feedback and optimization from measured outcomes may further improve AI systems.
Figure 3
Figure 3
Clinical Applications of Artificial Intelligence in Lung Cancer Screening on Detection of Incidental Pulmonary Nodules. Imaging analysis shows promise in predicting the risk of developing lung cancer on initial detection of an incidental lung nodule and in distinguishing indolent from aggressive lung neoplasms. PFS indicates progression‐free survival; ROC, receiver operating characteristic.
Figure 4
Figure 4
Applications of Noninvasive Monitoring During the Course of Cancer Evolution. Cancers share a common theme in developing intratumoral heterogeneity during their natural history. The presence of subclones (represented by different colors) confers significant implications in the response to treatment and may be difficult to capture through standard biopsies. Imaging and blood biomarkers during disease monitoring offer a potential technological solution for detecting the presence of intratumoral heterogeneity through space and time and thereby, perhaps, a direct change in therapeutic strategies.
Figure 5
Figure 5
Grad‐CAM Visualizations (Selvaraju et al 2017)127 for a Convolutional Neural Network (Chang et al 201896) Applied to 2 Examples of Isocitrate Dehydrogenase 1 (IDH1)/IDH2 Wild‐Type Glioblastoma and 2 Examples of IDH1‐Mutant Glioblastoma. Color maps are overlaid on original gadolinium‐enhanced, T1‐weighted magnetic resonance images, with red color weighted to the discriminative regions for IDH status classification.
Figure 6
Figure 6
Significant Associations Between Genomic Features and Radiomic Phenotypes in Breast Carcinoma Imaged With Magnetic Resonance Imaging. Gene‐set enrichment analysis (GSEA) and linear regression analysis were combined to associate genomic features, including microRNA (miRNA) expression, protein expression, and gene somatic mutations among others, with 6 categories of radiomic phenotypes. In this figure, each node represents a genomic feature or a radiomic phenotype. Each line is an identified statistically significant association, whereas nonsignificant associations are not depicted. Node size is proportional to its connectivity relative to other nodes in the category. Reprinted with permission from Maryellen L. Giger, University of Chicago (Zhu Y, Li H, Guo W, et al. Deciphering genomic underpinnings of quantitative MRI‐based radiomic phenotypes of invasive breast carcinoma [serial online]. Sci Rep. 2015;5:17787.170).

References

    1. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [serial online]. Nat Commun. 2014;5:4006.
    1. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500‐510.
    1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521;436‐444.
    1. Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label noise. arXiv:1705.10694 [cs.LG]; 2017. . Accessed May 28, 2018
    1. Moeskops P, Wolterink JM, van der Velden BHM, et al. Deep learning for multi‐task medical image segmentation in multiple modalities In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, eds. Medical Image Computing and Computer‐Assisted Intervention‐MICCAI 2016. 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings. Cham, Switzerland: Springer International Publishing AG; 2016:478‐486.
    1. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain‐transform manifold learning. Nature. 2018;555:487‐492.
    1. Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005;5:17‐19.
    1. Liang M, Tang W, Xu DM, et al. Low‐dose CT screening for lung cancer: computer‐aided detection of missed lung cancers. Radiology. 2016;281:279‐288.
    1. Ambrosini R, Wang P, Kolar B, O’Dell W. Computer‐aided detection of metastatic brain tumors using automated 3‐D template matching [abstract]. Proc Intl Soc Mag Reson Med. 2008;16:3414.
    1. Cheng HD, Cai X, Chen X, Hu L, Lou X. Computer‐aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit. 2003;36:2967‐2991.
    1. Nishikawa RM. Computer‐aided detection and diagnosis In: Bick U, Diekmann F, eds. Digital Mammography. Berlin, Germany: Springer; 2010:85‐106.
    1. Warfield SK, Zou KH, Wells WM. Validation of image segmentation by estimating rater bias and variance. Philos Trans A Math Phys Eng Sci. 2008;366:2361‐2375.
    1. Hong TS, Tome WA, Harari PM. Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol. 2012;103:92‐98.
    1. Li XA, Tai A, Arthur DW, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi‐Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys. 2009;73:944‐951.
    1. Chan HP, Hadjiiski L, Zhou C, Sahiner B. Computer‐aided diagnosis of lung cancer and pulmonary embolism in computed tomography—a review. Acad Radiol. 2008;15:535‐555.
    1. Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer aided‐diagnosis of prostate cancer on multiparametric MRI: a technical review of current research [serial online]. Biomed Res Int. 2014;2014:789561.
    1. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi‐observer study. Int J Radiat Oncol Biol Phys. 1999;43:57‐66.
    1. Ruprecht O, Weisser P, Bodelle B, Ackermann H, Vogl TJ. MRI of the prostate: interobserver agreement compared with histopathologic outcome after radical prostatectomy. Eur J Radiol. 2012;81:456‐460.
    1. Mirsadraee S, Oswal D, Alizadeh Y, Caulo A, van Beek E Jr. The 7th lung cancer TNM Classification and Staging System: review of the changes and implications. World J Radiol. 2012;4:128‐134.
    1. Amin MB, Greene FL, Edge SG, et al. The eighth edition AJCC Cancer Staging Manual: continuing to build a bridge from a population‐based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin. 2017;67:93‐99.
    1. Song SE, Seo BK, Cho KR, et al. Computer‐aided detection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary study [serial online]. Cancer Imaging. 2015;15:1.
    1. Levrini G, Sghedoni R, Mori C, et al. Size assessment of breast lesions by means of a computer‐aided detection (CAD) system for magnetic resonance mammography. Radiol Med. 2011;116:1039‐1049.
    1. Parmar C, Barry JD, Hosny A, Quackenbush J, Aerts HJWL. Data analysis strategies in medical imaging. Clin Cancer Res. 2018;24:3492‐3499.
    1. Jaffe CC. Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol. 2006;24:3245‐3251.
    1. Guenther LM, Rowe RG, Acharya PT, et al. Response Evaluation Criteria in Solid Tumors (RECIST) following neoadjuvant chemotherapy in osteosarcoma [serial online]. Pediatr Blood Cancer. 2018;65:e26896.
    1. Wan JCM, Massie C, Garcia‐Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223‐238.
    1. Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early‐stage lung cancer evolution. Nature. 2017;545:446‐451.
    1. Phallen J, Sausen M, Adleff V, et al. Direct detection of early‐stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9:pii:3aan2415.
    1. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi‐analyte blood test. Science. 2018;359:926‐930.
    1. Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical decision‐making: a Markov decision process approach. Artif Intell Med. 2013;57:9‐19.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7‐30.
    1. National Lung Screening Trial Research Team , Aberle DR, Adams AM, et al. Reduced lung‐cancer mortality with low‐dose computed tomographic screening. N Engl J Med. 2011;365:395‐409.
    1. Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120‐2128.
    1. Liu Y, Balagurunathan Y, Atwater T, et al. Radiological image traits predictive of cancer status in pulmonary nodules. Clin Cancer Res. 2017;23:1442‐1449.
    1. Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning [serial online]. Sci Rep. 2017;7:46479.
    1. Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non‐small cell lung cancer: CT radiogenomic characterization. Radiology. 2014;272:568‐576.
    1. Maldonado F, Duan F, Raghunath SM, et al. Noninvasive computed tomography‐based risk stratification of lung adenocarcinomas in the National Lung Screening Trial. Am J Respir Crit Care Med. 2015;192:737‐744.
    1. Grossmann P, Stringfield O, El‐Hachem N, et al. Defining the biological basis of radiomic phenotypes in lung cancer [serial online]. Elife. 2017;6:323421.
    1. Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res. 2017;77:3922‐3930.
    1. Coroller TP, Grossmann P, Hou Y, et al. CT‐based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114:345‐350.
    1. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumor‐infiltrating CD8 cells and response to anti‐PD‐1 or anti‐PD‐L1 immunotherapy. an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180‐1191.
    1. Rami‐Porta R, Bolejack V, Giroux DJ, et al. International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Board Members and Participating Institutions The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9:1618‐1624.
    1. Patz EF Jr, Pinsky P, Gatsonis C, et al. NLST Overdiagnosis Manuscript Writing Team. Overdiagnosis in low‐dose computed tomography screening for lung cancer. JAMA Intern Med. 2014;174:269‐274.
    1. Manser R, Lethaby A, Irving LB, et al. Screening for lung cancer [serial online]. Cochrane Database Syst Rev. 2013;6:CD001991.
    1. Thalanayar PM, Altintas N, Weissfeld JL, Fuhrman CR, Wilson DO. Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening Study. Ann Am Thorac Soc. 2015;12:1193‐1196.
    1. Massion PP, Walker RC. Indeterminate pulmonary nodules: risk for having or for developing lung cancer? Cancer Prev Res. 2014;7:1173‐1178.
    1. McKee BJ, Regis S, Borondy‐Kitts AK, et al. NCCN Guidelines as a model of extended criteria for lung cancer screening. J Natl Compr Canc Netw. 2018;16:444‐449.
    1. Scholtz JE, Lu MT, Hedgire S, et al. Incidental pulmonary nodules in emergent coronary CT angiography for suspected acute coronary syndrome: impact of revised 2017 Fleischner Society guidelines. J Cardiovasc Comput Tomogr. 2018;12:28‐33.
    1. Gould MK, Tang T, Liu IL, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192:1208‐1214.
    1. Furman AM, Dit Yafawi JZ, Soubani AO. An update on the evaluation and management of small pulmonary nodules. Future Oncol. 2013;9:855‐865.
    1. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284:228‐243.
    1. American College of Radiology . Lung‐RADS. Reston, VA: American College of Radiology; 2018. . Accessed May 15, 2018.
    1. Kundel HL, Polansky M. Measurement of observer agreement. Radiology. 2003;228:303‐308.
    1. Liu Y, Wang H, Li Q, et al. Radiologic features of small pulmonary nodules and lung cancer risk in the National Lung Screening Trial: a nested case‐control study. Radiology. 2018;286:298‐306.
    1. Kaggle Inc . Data Science Bowl 2017. San Francisco, CA: Kaggle Inc; 2017. . Accessed May 14, 2018.
    1. Ferlay J, Soerjomataram I, Ervik M, eds. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. v1.0. IARC CancerBase No. 11. Lyon, France: IARC Press; 2014.
    1. Schabath MB, Haura EB. Epidemiology of non‐small cell lung neoplasms In: Cameron RB, Gage DL, Olevsky O, eds. Modern Thoracic Oncology. Volume 2: Trachea, Lung, and Pleura. Singapore: World Scientific Publishing; 2018:61‐66.
    1. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32:605‐644.
    1. Schabath MB, Thompson ZJ, Gray JE. Temporal trends in demographics and overall survival of non‐small‐cell lung cancer patients at Moffitt Cancer Center from 1986 to 2008. Cancer Control. 2014;21:51‐56.
    1. Kachroo S, Tong L, Spitz MR, et al. Trends in prevalence of prognostic factors and survival in lung cancer patients from 1985 to 2004 at a tertiary care center. Cancer Detect Prev. 2008;32:101‐108.
    1. Birim O, Kappetein AP, van Klaveren RJ, Bogers AJ. Prognostic factors in non‐small cell lung cancer surgery. Eur J Surg Oncol. 2006;32:12‐23.
    1. Myers MH, Ries LAG. Cancer patient survival rates: SEER program results for 10 years of follow‐up. CA Cancer J Clin. 1989;39:21‐32.
    1. Jamal‐Hanjani M, Wilson GA, McGranahan N, et al. TRACERx Consortium. Tracking the evolution of non‐small‐cell lung cancer. N Engl J Med. 2017;376:2109‐2121.
    1. Murugaesu N, Wilson GA, Birkbak NJ, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015;5:821‐831.
    1. Johnson BE, Mazor T, Hong C, et al. Mutational analysis reveals the origin and therapy‐driven evolution of recurrent glioma. Science. 2014;343:189‐193.
    1. Tunali I, Stringfield O, Guvenis A, et al. Radial gradient and radial deviation radiomic features from pre‐surgical CT scans are associated with survival among lung adenocarcinoma patients. Oncotarget. 2017;8:96013‐96026.
    1. Li Q, Balagurunathan Y, Qi J, et al. CT imaging features associated with recurrence in non‐small cell lung cancer patients after stereotactic body radiotherapy [serial online]. Radiat Oncol. 2017;12:158.
    1. Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology [serial online]. Front Oncol. 2016;6:71.
    1. Parmar C, Grossmann P, Bussink J. Lambin P Aerts HJ. Machine learning methods for quantitative radiomic biomarkers [serial online]. Sci Rep. 2015;5:13087.
    1. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017;168:613‐628.
    1. de Bruin EC, McGranahan N, Mitter R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346:251‐256.
    1. Turajlic S, Xu H, Litchfield K, et al. TRACERx Renal Consortium. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell. 2018;173:595‐610.e11.
    1. Morrissy AS, Garzia L, Shih DJ, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016;529:351‐357.
    1. Brastianosm PJ, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5:1164‐1177.
    1. Aerts HJWL. The potential of radiomic‐based phenotyping in precision medicine. JAMA Oncol. 2016;2:1636‐1642.
    1. Lamy P, Nordentoft I, Birkenkamp‐Demtroder K, et al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res. 2016;76:5894‐5906.
    1. Xue R, Li R, Guo H, et al. Variable intra‐tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology. 2016;150:998‐1008.
    1. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269:8‐15.
    1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563‐577.
    1. Schwartz LH, Seymour L, Litiere S, et al. RECIST 1.1—Standardisation and disease‐specific adaptations: perspectives from the RECIST Working Group. Eur J Cancer. 2016;62:138‐145.
    1. Gandhi L, Rodriguez‐Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non‐small‐cell lung cancer. N Engl J Med. 2018;378:2078‐2092.
    1. Podolsky MD, Barchuk AA, Kuznetcov VI, Gusarova NF, Gaidukov VS, Tarakanov SA. Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pac J Cancer Prev. 2016;17:835‐838.
    1. de Jong EE, van Elmpt W, Leijenaar RT, et al. [18F]FDG PET/CT‐based response assessment of stage IV non‐small cell lung cancer treated with paclitaxel‐carboplatin‐bevacizumab with or without nitroglycerin patches. Eur J Nucl Med Mol Imaging. 2017;44:8‐16.
    1. Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC [serial online]. Sci Rep. 2016;6:33860.
    1. Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72–87.
    1. Balagurunathan Y, Kumar V, Gu Y, et al. Test‐retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805‐823.
    1. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging [serial online]. Sci Rep. 2016;6:23428.
    1. Fetit AE, Novak J, Peet AC, Arvanitis TN. Three‐dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed. 2015;28:1174‐1184.
    1. Coroller TP, Bi WL, Huynh E, et al. Radiographic prediction of meningioma grade by semantic and radiomic features [serial online]. PLoS ONE. 2017;12:e0187908.
    1. Zhang X, Yan LF, Hu YC, et al. Optimizing a machine learning based glioma grading system using multi‐parametric MRI histogram and texture features. Oncotarget. 2017;8:47816‐47830.
    1. Zhang S, Song G, Zang Y, et al. Non‐invasive radiomics approach potentially predicts non‐functioning pituitary adenomas subtypes before surgery. Eur Radiol. 2018;28:3692‐3701.
    1. Kang D, Park JE, Kim YH, et al. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol. 2018;20:1251‐1261.
    1. Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys. 2016;43:2835‐2844.
    1. Zhou H, Vallieres M, Bai HX, et al. MRI features predict survival and molecular markers in diffuse lower‐grade gliomas. Neuro Oncol. 2017;19:862‐870.
    1. Zhang B, Chang K, Ramkissoon S, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high‐grade gliomas. Neuro Oncol. 2017;19:109‐117.
    1. Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for the determination of IDH status in low‐ and high‐grade gliomas from MR imaging. Clin Cancer Res. 2018;24:1073‐1081.
    1. Larroza A, Moratal D, Paredes‐Sanchez A, et al. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging. 2015;42:1362‐1368.
    1. Tiwari P, Prasanna P, Wolansky L, et al. Computer‐extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. AJNR Am J Neuroradiol. 2016;37:2231‐2236.
    1. Kim TH, Yun TJ, Park CK, et al. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high‐grade glioma patients. Oncotarget. 2017;8:20340‐20353.
    1. Kebir S, Khurshid Z, Gaertner FC, et al. Unsupervised consensus cluster analysis of [18F]‐fluoroethyl‐L‐tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high‐grade glioma. Oncotarget. 2017;8:8294‐8304.
    1. Chang K, Zhang B, Guo X, et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol . 2016;18:1680‐1687.
    1. Grossmann P, Narayan V, Chang K, et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017;19:1688‐1697.
    1. Liu TT, Achrol AS, Mitchell LA, et al. Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro Oncol. 2017;19:997‐1007.
    1. Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O. Comparison between glioblastoma and primary central nervous system lymphoma using MR image‐based texture analysis. Magn Reson Med Sci. 2018;17:50‐57.
    1. Xu Y, Jia Z, Wang LB, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features [serial online]. BMC Bioinformatics. 2017;18:281.
    1. Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61‐78.
    1. Rios Velazquez E, Meier R, Dunn WD Jr, et al. Fully automatic GBM segmentation in the TCGA‐GBM dataset: prognosis and correlation with VASARI features [serial online]. Sci Rep. 2015;5:16822.
    1. Sauwen N, Acou M, Sima DM, et al. Semi‐automated brain tumor segmentation on multi‐parametric MRI using regularized non‐negative matrix factorization [serial online]. BMC Med Imaging. 2017;17:29.
    1. Meier R, Knecht U, Loosli T, et al. Clinical evaluation of a fully‐automatic segmentation method for longitudinal brain tumor volumetry [serial online]. Sci Rep. 2016;6:23376.
    1. Pereira S, Meier R, McKinley R, et al. Enhancing interpretability of automatically extracted machine learning features: application to a RBM‐Random Forest system on brain lesion segmentation. Med Image Anal. 2018;44:228‐244.
    1. Liu Y, Stojadinovic S, Hrycushko B, et al. A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery [serial online]. PLoS ONE. 2017;12:e0185844.
    1. Blanc‐Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F‐FET PET in gliomas: a full 3D U‐Net convolutional neural network study [serial online]. PLoS ONE. 2018;13:e0195798.
    1. Meier R, Porz N, Knecht U, et al. Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma. J Neurosurg. 2017;127:798‐806.
    1. Kamnitsask. Kamnitsask/deepmedic. GitHub. . Accessed May 28, 2018.
    1. Puchalski RB, Shah N, Miller J, et al. An anatomic transcriptional atlas of human glioblastoma. Science. 2018;360:660‐663.
    1. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high‐grade gliomas: response assessment in Neuro‐Oncology Working Group. J Clin Oncol. 2010;28:1963‐1972.
    1. Kohutek ZA, Yamada Y, Chan TA, et al. Long‐term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149‐156.
    1. Chang PD, Malone HR, Boweden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol. 2017;38:890‐898.
    1. Aizer AA, Abedalthaqafi M, Bi WL, et al. A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro Oncol. 2016;18:269‐274.
    1. von Bueren AO, Kortmann RD, von Hoff K, et al. Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J Clin Oncol. 2016;34:4151‐4160.
    1. Mansouri A, Hachem LD, Mansouri S, et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges [published online ahead of print September 5, 2018]. Neuro Oncol. 10.1093/neuonc/noy132.
    1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, eds. WHO Classification of Tumours of the Central Nervous System. Revised 4th ed, vol 1. Lyon, France: International Agency for Research on Cancer; 2016.
    1. Macyszyn L, Akbari H, Pisapia JM, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18:417‐425.
    1. Akkus Z, Ali I, Sedlar J, et al. Predicting deletion of chromosomal arms 1p/19q in low‐grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30:469‐476.
    1. Kickingereder P, Bonekamp D, Nowosielski M, et al. Radiogenomics of glioblastoma: machine learning‐based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology. 2016;281:907‐918.
    1. Bakas S, Akari H, Pisapia J, et al. In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ‐index. Clin Cancer Res. 2017;23:4724‐4734.
    1. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad‐CAM: Visual Explanations From Deep Networks via Gradient‐Based Localization In: Institute of Electrical and Electronics Engineers (IEEE) and IEEE Computer Society , eds. 2017 IEEE International Conference on Computer Vision Workshops. Proceedings: 22–29 October 2017, Venice, Italy. Los Alamitos, CA: IEEE Computer Society; 2017:618‐626.
    1. Young JD, Cai C, Lu X. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma [serial online]. BMC Bioinformatics. 2017;18(suppl 11):381.
    1. Hegi ME, Diserens AC, Gorila T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997‐1003.
    1. Esteller M, Garcia‐Foncillas J, Andion E, et al. Inactivation of the DNA‐repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350‐1354.
    1. Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy‐temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709‐722.
    1. Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699‐708.
    1. Ellingson BM, Bendsus M, Boxerman J, et al. Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol. 2015;17:1188‐1198.
    1. Gao B, Zhang H, Zhang SD, et al. Mammographic and clinicopathological features of triple‐negative breast cancer [serial online]. Br J Radiol. 2014;87:20130496.
    1. Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt RA. Computerized detection of clustered microcalcifications in digital mammograms using a shift‐invariant artificial neural network. Med Phys. 1994;21:517‐524.
    1. Karssemeijer N, Otten JD, Rijken H, Holland R. Computer aided detection of masses in mammograms as decision support. Br J Radiol. 2006;79(spec no. 2):S123‐S126.
    1. Reiser I, Nishikawa RM, Giger ML, et al. Computerized mass detection for digital breast tomosynthesis directly from the projection images. Med Phys. 2006;33:482‐491.
    1. Sahiner B, Chan HP, Hadjiiski LM, et al. Computer‐aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach. Med Phys. 2012;39:28‐39.
    1. Gilhuijs KG, Giger ML, Bick U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic resonance imaging. Med Phys. 1998;25:1647‐1654.
    1. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K. Improving breast cancer diagnosis with computer‐aided diagnosis. Acad Radiol. 1999;6:22‐33.
    1. Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on contrast‐enhanced magnetic resonance images. Magn Reson Med. 2007;58:562‐571.
    1. Booshan N, Giger ML, Jansen SA, Hui Li, Lan L, Newstead GM. Cancerous breast lesions on dynamic contrast‐enhanced MR images: computerized characterization for image‐based prognostic markers. Radiology. 2010;254:680‐690.
    1. Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Booshan N. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian Eigenmaps and t‐SNE. Med Phys. 2010;37:339‐351.
    1. Nielsen M, Kareore G, Loog M, et al. A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol. 2011;35:381‐387.
    1. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks [serial online]. J Med Imaging. 2016;3:034501.
    1. Andropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44:5162‐5171.
    1. Gierach GL, Li H, Loud JT, et al. Relationships between computer‐extracted mammographic texture pattern features and BRCA1/2 mutation status. a cross‐sectional study [serial online]. Breast Cancer Res. 2014;16:424.
    1. Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes on the TCGA/TCIA data set [serial online]. NPJ Breast Cancer. 2016;2:pii16012.
    1. Li H, Giger ML, Huynh BQ, Andropova NO. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full‐field digital mammograms [serial online]. J Med Imaging (Bellingham). 2017;4:041304.
    1. Drukker K, Sennett CA, Giger ML. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts [serial online]. Med Phys. 2014;41:012901.
    1. Lodwick GS. Computer‐aided diagnosis in radiology. A research plan. Invest Radiol. 1966;1:72‐80.
    1. Giger ML. Computerized analysis of images in the detection and diagnosis of breast cancer. Semin Ultrasound CT MRI. 2004;25:411‐418.
    1. Freer TW, Ulissey MJ. Screening mammography with computer‐aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220:781‐786.
    1. Rao VM, Levin DC, Parker L, Cavanaugh B, Frangos AJ, Sunshine JH. How widely is computer‐aided detection used in screening and diagnostic mammography? J Am Coll Radiol. 2010;7:802‐805.
    1. Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303‐312.
    1. Ribli D, Horvath A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning [serial online]. Sci Rep. 2018;8:4165.
    1. Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2018;22:1218‐1226.
    1. Dalmis MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern‐Merida A. Fully automated detection of breast cancer in screening MRI using convolutional neural networks [serial online]. J Med Imaging (Bellingham). 2018;5:014502.
    1. Sahiner B, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996;15:598‐610.
    1. Byng JW, Yaffe MJ, Lockwood GA, Little LE, Tritchler DL, Boyd NF. Automated analysis of mammographic densities and breast carcinoma risk. Cancer. 1997;80:66‐74.
    1. Alonzo‐Proulx O, Packard N, Boone JM, et al. Validation of a method for measuring the volumetric breast density from digital mammograms. Phys Med Biol. 2010;55:3027‐3044.
    1. van Engeland S, Snoeren PR, Huisman H, Boetes C, Karssemeijer N. Volumetric breast density estimation from full‐field digital mammograms. IEEE Trans Med Imaging. 2006;25:273‐282.
    1. Li H, Giger ML, Lan L, et al. Computerized analysis of mammographic parenchymal patterns on a large clinical dataset of full‐field digital mammograms: robustness study with two high‐risk datasets. J Digit Imaging. 2012;25:591‐598.
    1. Huo Z, Giger ML, Olopoade OI, et al. Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers. Radiology. 2002;225:519‐526.
    1. Kontos D, Bakic PR, Carton AK, Toxel AB, Conant EF, Maidment AD. Parenchymal texture analysis in digital breast tomosynthesis for breast cancer risk estimation: a preliminary study. Acad Radiol. 2009;16:283‐298.
    1. King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology. 2011;260:50‐60.
    1. Wu S, Weinstein SP, DeLeo MJ 3rd, et al. Quantitative assessment of background parenchymal enhancement in breast MRI predicts response to risk‐reducing salpingo‐oophorectomy: preliminary evaluation in a cohort of BRCA1/2 mutation carriers [serial online]. Breast Cancer Res. 2015;17:67.
    1. Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng. 2013;15:327‐357.
    1. Chen W, Giger ML, Lan L, Bick U. Computerized interpretation of breast MRI: investigation of enhancement‐variance dynamics. Med Phys. 2004;31:1076‐1082.
    1. Zhu Y, Li H, Guo W, et al. Deciphering genomic underpinnings of quantitative MRI‐based radiomic phenotypes of invasive breast carcinoma [serial online]. Sci Rep. 2015;5:17787.
    1. Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha KL. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography [serial online]. Med Phys. 2016;43:6654.
    1. Li H, Zhu Y, Burnside ES, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology. 2016;281:382‐391.
    1. Hylton NM, Gatsonis CA, Rosen MA, et al. ACRIN 6657 Trial Team and I‐SPY1 Trial Investigators. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence‐free survival—results from the ACRIN 6657/CALGB 150007 I‐SPY 1 trial. Radiology. 2016;279:44‐55.
    1. Drukker K, Li H, Antopova N, Edwards A, Papaioannou J, Giger JL. Most‐enhancing tumor volume by MRI radiomics predicts recurrence‐free survival ‘early on’ in neoadjuvant treatment of breast cancer [serial online]. Cancer Imaging. 2018;18:12.
    1. Hamdy FC, Donovan JL, Lane JA, et al. 10‐Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med. 2016;375:1415‐1424.
    1. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65:1046‐1055.
    1. Wolters T, Roobol MJ, van Leeuwen PJ, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J Urol. 2011;185:121‐125.
    1. Ahmed HU, El‐Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi‐parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815‐822.
    1. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI‐targeted or standard biopsy for prostate‐cancer diagnosis. N Engl J Med. 2018;378:1767‐1777.
    1. Liu L, Tian Z, Zhang Z, Fei B. Computer‐aided detection of prostate cancer with MRI: technology and applications. Acad Radiol. 2016;23:1024‐1046.
    1. Giannini V, Mazzetti S, Armando E, et al. Multiparametric magnetic resonance imaging of the prostate with computer‐aided detection: experienced observer performance study. Eur Radiol. 2017;27:4200‐4208.
    1. Hambrock T, Vos PC, Hulsbergen‐van de Kaa CA, Barentsz JO, Huisman HJ. Prostate cancer: computer‐aided diagnosis with multiparametric 3‐T MR imaging—effect on observer performance. Radiology. 2013;266:521‐530.
    1. Seltzer SE, Getty DJ, Tempany CM, et al. Staging prostate cancer with MR imaging: a combined radiologist‐computer system. Radiology. 1997;202:219‐226.
    1. Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer‐aided detection of prostate cancer in MRI. IEEE Trans Med Imaging. 2014;33:1083‐1092.
    1. Moradi M, Salcudean SE, Chang SD, et al. Multiparametric MRI maps for detection and grading of dominant prostate tumors. J Magn Reson Imaging. 2012;35:1403‐1413.
    1. Shah V, Turkbey B, Mani H, et al. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys. 2012;39:4093‐4103.
    1. Niaf E, Rouviere O, Mege‐Lechevallier F, Bratan F, Lartizien C. Computer‐aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol. 2012;57:3833‐3851.
    1. Ginsburg SB, Algohary A, Pahwa S, et al. Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: preliminary findings from a multi‐institutional study. J Magn Reson Imaging. 2017;46:184‐193.
    1. Cameron A, Khalvati F, Haider MA, Wong A. MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans Biomed Eng. 2016;63:1145‐1156.
    1. Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ. Automatic computer‐aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys Med Biol. 2012;57:1527‐1542.
    1. Kwak JT, Xu S, Wood BJ, et al. Automated prostate cancer detection using T2‐weighted and high‐b‐value diffusion‐weighted magnetic resonance imaging. Med Phys. 2015;42:2368‐2378.
    1. Chan I, Wells W 3rd, Mulkern RV, et al. Detection of prostate cancer by integration of line‐scan diffusion, T2‐mapping and T2‐weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys. 2003;30:2390‐2398.
    1. Seah JCY, Tang JSN, Kitchen A.Detection of prostate cancer on multiparametric MRI In: Armato SG, Petrick NA, eds. Medical Imaging 2017: Computer‐Aided Diagnosis. SPIE Proceedings, Vol 10134. Bellingham, WA: International Society for Optics and Photonics; 2017:1013429.
    1. Liu S, Zheng H, Feng Y, Li W.Prostate cancer diagnosis using deep learning with 3D multiparametric MRI In: Armato SG, Petrick NA, eds. Medical Imaging 2017: Computer‐Aided Diagnosis. SPIE Proceedings, Vol 10134. Bellingham, WA: International Society for Optics and Photonics; 2017:1013428.
    1. Chen Q, Xu X, Hu S, Li X, Zou Q, Li Y. A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans In: Armato SG, Petrick NA, eds. Medical Imaging 2017: Computer‐Aided Diagnosis. SPIE Proceedings, Vol 10134. Bellingham, WA: International Society for Optics and Photonics; 2017:101344F.
    1. Mehrtash A, Sedghi A, Ghafoorian M, et al. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks [serial online]. Proc SPIE Int Soc Opt Eng. 2017;10134:20342A.
    1. Kiraly AP, Nader CA, Tyusuzoglu A, et al.Deep convolutional encoder‐decoders for prostate cancer detection and classification In: Descoteaux M, Maier‐Hein L, Franz AM, Jannin P, Collins L, Duchesne S, eds. Medical Image Computing and Computer‐Assisted Intervention‐MICCAI 2017. 20th International Conference, Quebec City, QC, Canada, September 11–13, 2017. Proceedings, pt III. Cham, Switzerland: Springer International Publishing AG;2017:489‐497.
    1. Moradi M, Abolmaesumi P, Siemens DR, Sauerbrei EE, Boag AH, Mausavi P. Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time series. IEEE Trans Biomed Eng. 2009;56:2214‐2224.
    1. Imani F, Abolmaesumi P, Gobson E, et al. Computer‐aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Trans Med Imaging. 2015;34:2248‐2257.
    1. Azizi S, Bayat S, Yan P, et al. Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. Int J Comput Assist Radiol Surg. 2017;12:1293‐1305.
    1. Organisation for Economic Cooperation and Development (OECD) . Health equipment: computed tomography (CT) scanners. Paris, France: OECD; 2015. . Accessed May 28, 2018.
    1. Organisation for Economic Cooperation and Development (OECD) . Magnetic resonance imaging (MRI) exams. Paris, France: OECD; 2015. . Accessed May 28, 2018.
    1. Aganj I, Harisinghani MG, Weissleder R, Fischl B. Unsupervised medical image segmentation based on the local center of mass [serial online]. Sci Rep. 2018;8:13012.
    1. Jamaludin A, Kadir T,Zisserman A. Self‐supervised learning for spinal MRIs In: Cardoso J, Argbel T, Carniero G, et al. eds. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Third International Workshop, DLMIA 2017, and 7th International Workshop, ML‐CDS 2017; Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, Proceedings. Cham, Switzerland: Springer International Publishing AG;2017:294‐302.
    1. Shin HC, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks In: Gooya A, Goskel O, Oguz I, Burgos N, eds. Simulation and Synthesis in Medical Imaging. Third International Workshop, SASHIMI 2018, held in conjunction with MICCAI 2018, Granada, Spain, 2018, Proceedings. Cham, Switzerland; Springer International Publishing AG;2018:1‐11.
    1. Purushotham S, Meng C, Che Z, Liu Y. Benchmarking deep learning models on large healthcare datasets. J Biomed Inform. 2018;83:112‐134.
    1. Chang K, Balachandar N, Lam C, et al. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25:945‐954.
    1. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Sumers RM. ChestX‐ray8: hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases In: Institute of Electrical and Electronics Engineers (IEEE) and IEEE Computer Society , eds. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society; 2017.
    1. Zhang QS, Zhu SC. Visual interpretability for deep learning: a survey. Front Inform Technol Electronic Eng. 2018;19:27‐39.
    1. Doshi‐Velez F, Mason Kortz, Budish R, et al. Accountability of AI under the law: the role of explanation. arXiv:1711.01134 []; 2017. Available at: . Accessed May 28, 2018.
    1. Barrett SRH, Speth RL, Eastham SD, et al. Impact of the Volkswagen emissions control defeat device on US public health [serial online]. Environ Res Lett. 2015;10:114005.
    1. Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med. 2018;378:981‐983.
    1. van Ginneken B, Schaefer‐Prokop CM, Prokop M. Computer‐aided diagnosis: how to move from the laboratory to the clinic. Radiology. 2011;261:719‐732.
    1. Olaronke I, Oluwaseun O. Big data in healthcare: prospects, challenges and resolutions [abstract 111] In: Institute of Electrical and Electronics Engineers (IEEE) , ed. Proceedings of the 2016 Future Technologies Conference (FTC). Los Alamitos, CA: IEEE Computer Society: 2016:1152‐1157.
    1. Gilad‐Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wersning J. CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. Proc Mach Learn Res. 2016;48:201‐210.
    1. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist‐level classification of skin cancer with deep neural networks. Nature. 2017;542:115‐118.
    1. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402‐2410.
    1. Valindria VV, Lavadas I, Bai W, et al. Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans Med Imaging. 2017;36:1597‐1606.

Source: PubMed

3
Předplatit