Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence

Kirsteen N Browning, Kaitlin E Carson, Kirsteen N Browning, Kaitlin E Carson

Abstract

The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.

Keywords: brainstem; feeding; gastrointestinal; vagus.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of the neuroanatomical connections between the gastrointestinal (GI) tract and brainstem vagal nuclei involved in the regulation of food intake. Sensory information from the GI tract is relayed centrally via the afferent vagus which responds both directly (via neuropods) and indirectly (via paracrine signaling) to gastrointestinal stimulation. At the level of the dorsal hindbrain, afferent vagal inputs enter the brainstem via the tractus solitarius (TS) and terminate on neurons of the nucleus of the tractus solitarius (NTS). The integrated signal is relayed from the NTS to the adjacent dorsal motor nucleus of the vagus (DMV) via catecholaminergic, glutamatergic, and predominantly gamma aminobutyric acid (GABA)-ergic, synapses. The DMV contains preganglionic parasympathetic motoneurons that relayed the resulting output signal to the GI tract via the efferent motor vagus. EEC—enteroendocrine cells; CC—central canal.
Figure 2
Figure 2
Schematic representation of the neuroanatomical connections between the gastrointestinal (GI) tract and central nervous system nuclei involved in regulation of GI functions and feeding. Note the location of the nuclei are not intended to be anatomically accurate. AP—area postrema; NTS—nucleus of the tractus solitarius, DMV—dorsal motor nucleus of the vagus; DVC—dorsal vagal complex; PBN—parabrachial nucleus; VTA/SN—ventral tegmental area/Substantia Nigra; PVN—paraventricular nucleus of the hypothalamus; VMH—ventromedial hypothalamus; LH—lateral hypothalamus; ARC—arcuate nucleus; CeA—central nucleus of the amygdala; BNST—bed nucleus of the stria terminalis.

References

    1. Browning K.N., Travagli R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 2014;4:1339–1368. doi: 10.1002/cphy.c130055.
    1. Brookes S.J., Spencer N.J., Costa M., Zagorodnyuk V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 2013;10:286–296. doi: 10.1038/nrgastro.2013.29.
    1. Berthoud H.R., Neuhuber W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 2000;85:1–17. doi: 10.1016/S1566-0702(00)00215-0.
    1. Moran T.H., Ladenheim E.E. Physiologic and Neural Controls of Eating. Gastroenterol. Clin. N. Am. 2016;45:581–599. doi: 10.1016/j.gtc.2016.07.009.
    1. Wang Y.B., de Lartigue G., Page A.J. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front. Physiol. 2020;11:643. doi: 10.3389/fphys.2020.00643.
    1. Bai L., Mesgarzadeh S., Ramesh K.S., Huey E.L., Liu Y., Gray L.A., Aitken T.J., Chen Y., Beutler L.R., Ahn J.S., et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell. 2019;179:1129–1143.e1123. doi: 10.1016/j.cell.2019.10.031.
    1. Williams E.K., Chang R.B., Strochlic D.E., Umans B.D., Lowell B.B., Liberles S.D. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System. Cell. 2016;166:209–221. doi: 10.1016/j.cell.2016.05.011.
    1. Vincent K.M., Sharp J.W., Raybould H.E. Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats. Neurogastroenterol. Motil. 2011;23:e282–e293. doi: 10.1111/j.1365-2982.2011.01673.x.
    1. Raybould H.E. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton. Neurosci. 2010;153:41–46. doi: 10.1016/j.autneu.2009.07.007.
    1. Dockray G.J. Enteroendocrine cell signalling via the vagus nerve. Curr. Opin. Pharm. 2013;13:954–958. doi: 10.1016/j.coph.2013.09.007.
    1. Dockray G.J. Luminal sensing in the gut: An overview. J. Physiol. Pharmacol. 2003;54(Suppl. 4):9–17.
    1. Lassman D.J., McKie S., Gregory L.J., Lal S., D’Amato M., Steele I., Varro A., Dockray G.J., Williams S.C., Thompson D.G. Defining the role of cholecystokinin in the lipid-induced human brain activation matrix. Gastroenterology. 2010;138:1514–1524. doi: 10.1053/j.gastro.2009.12.060.
    1. Fernandes A.B., Alves da Silva J., Almeida J., Cui G., Gerfen C.R., Costa R.M., Oliveira-Maia A.J. Postingestive Modulation of Food Seeking Depends on Vagus-Mediated Dopamine Neuron Activity. Neuron. 2020;106:778–788.e776. doi: 10.1016/j.neuron.2020.03.009.
    1. Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361 doi: 10.1126/science.aat5236.
    1. Kalia M., Mesulam M.M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J. Comp. Neurol. 1980;193:435–465. doi: 10.1002/cne.901930210.
    1. Norgren R., Smith G.P. Central distribution of subdiaphragmatic vagal branches in the rat. J. Comp. Neurol. 1988;273:207–223. doi: 10.1002/cne.902730206.
    1. Altschuler S.M., Bao X.M., Bieger D., Hopkins D.A., Miselis R.R. Viscerotopic representation of the upper alimentary tract in the rat: Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J. Comp. Neurol. 1989;283:248–268. doi: 10.1002/cne.902830207.
    1. Broussard D.L., Altschuler S.M. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am. J. Med. 2000;108(Suppl. 4a):79s–86s. doi: 10.1016/S0002-9343(99)00343-5.
    1. Jean A. The nucleus tractus solitarius: Neuroanatomic, neurochemical and functional aspects. Arch. Int. Physiol. Biochim. Biophys. 1991;99:A3–A52. doi: 10.3109/13813459109145916.
    1. Andresen M.C., Yang M.Y. Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am. J. Physiol. 1990;259:H1307–H1311. doi: 10.1152/ajpheart.1990.259.4.H1307.
    1. Andresen M.C., Kunze D.L. Nucleus tractus solitarius—Gateway to neural circulatory control. Annu. Rev. Physiol. 1994;56:93–116. doi: 10.1146/annurev.ph.56.030194.000521.
    1. Travagli R.A., Gillis R.A., Rossiter C.D., Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 1991;260:G531–G536. doi: 10.1152/ajpgi.1991.260.3.G531.
    1. Clyburn C., Travagli R.A., Browning K.N. Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;314:G623–G634. doi: 10.1152/ajpgi.00395.2017.
    1. Wright J., Campos C., Herzog T., Covasa M., Czaja K., Ritter R.C. Reduction of food intake by cholecystokinin requires activation of hindbrain NMDA-type glutamate receptors. Am. J. Physiol. Regul. Integr Comp. Physiol. 2011;301:R448–R455. doi: 10.1152/ajpregu.00026.2011.
    1. Guard D.B., Swartz T.D., Ritter R.C., Burns G.A., Covasa M. Blockade of hindbrain NMDA receptors containing NR2 subunits increases sucrose intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296:R921–R928. doi: 10.1152/ajpregu.90456.2008.
    1. Zhao H., Peters J.H., Zhu M., Page S.J., Ritter R.C., Appleyard S.M. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract. J. Physiol. 2015;593:111–125. doi: 10.1113/jphysiol.2013.258103.
    1. Glaum S.R., Miller R.J. Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J. Neurosci. 1993;13:1636–1641. doi: 10.1523/JNEUROSCI.13-04-01636.1993.
    1. Foley C.M., Moffitt J.A., Hay M., Hasser E.M. Glutamate in the nucleus of the solitary tract activates both ionotropic and metabotropic glutamate receptors. Am. J. Physiol. 1998;275:R1858–R1866. doi: 10.1152/ajpregu.1998.275.6.R1858.
    1. De Lartigue G. Putative roles of neuropeptides in vagal afferent signaling. Physiol. Behav. 2014;136:155–169. doi: 10.1016/j.physbeh.2014.03.011.
    1. Babic T., Troy A.E., Fortna S.R., Browning K.N. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons. Neurogastroenterol. Motil. 2012;24:e476–e488. doi: 10.1111/j.1365-2982.2012.01987.x.
    1. Troy A.E., Simmonds S.S., Stocker S.D., Browning K.N. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents. J. Physiol. 2016;594:99–114. doi: 10.1113/JP271558.
    1. Wan S., Browning K.N. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G757–G763. doi: 10.1152/ajpgi.00576.2007.
    1. Wan S., Browning K.N. Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;295:G1050–G1057. doi: 10.1152/ajpgi.90288.2008.
    1. Roberts B.L., Zhu M., Zhao H., Dillon C., Appleyard S.M. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;313:R229–R239. doi: 10.1152/ajpregu.00413.2016.
    1. Hosford P.S., Mifflin S.W., Ramage A.G. 5-hydroxytryptamine-mediated neurotransmission modulates spontaneous and vagal-evoked glutamate release in the nucleus of the solitary tract effect of uptake blockade. J. Pharmacol. Exp. Ther. 2014;349:288–296. doi: 10.1124/jpet.113.211334.
    1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0.
    1. Bado A., Levasseur S., Attoub S., Kermorgant S., Laigneau J.P., Bortoluzzi M.N., Moizo L., Lehy T., Guerre-Millo M., Le Marchand-Brustel Y., et al. The stomach is a source of leptin. Nature. 1998;394:790–793. doi: 10.1038/29547.
    1. Neyens D., Zhao H., Huston N.J., Wayman G.A., Ritter R.C., Appleyard S.M. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents. J. Neurosci. 2020;40:7054–7064. doi: 10.1523/JNEUROSCI.1865-19.2020.
    1. Cheng W., Ndoka E., Hutch C., Roelofs K., MacKinnon A., Khoury B., Magrisso J., Kim K.S., Rhodes C.J., Olson D.P., et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight. 2020;5 doi: 10.1172/jci.insight.134359.
    1. Hoyda T.D., Smith P.M., Ferguson A.V. Gastrointestinal hormone actions in the central regulation of energy metabolism: Potential sensory roles for the circumventricular organs. Int. J. Obes. 2009;33(Suppl. 1):S16–S21. doi: 10.1038/ijo.2009.11.
    1. Cottrell G.T., Ferguson A.V. Sensory circumventricular organs: Central roles in integrated autonomic regulation. Regul. Pept. 2004;117:11–23. doi: 10.1016/j.regpep.2003.09.004.
    1. Fry M., Ferguson A.V. The sensory circumventricular organs: Brain targets for circulating signals controlling ingestive behavior. Physiol. Behav. 2007;91:413–423. doi: 10.1016/j.physbeh.2007.04.003.
    1. Baptista V., Browning K.N., Travagli R.A. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R1092–R1100. doi: 10.1152/ajpregu.00517.2006.
    1. Trapp S., Richards J.E. The gut hormone glucagon-like peptide-1 produced in brain: Is this physiologically relevant? Curr. Opin. Pharmacol. 2013;13:964–969. doi: 10.1016/j.coph.2013.09.006.
    1. Browning K.N., Travagli R.A. Central control of gastrointestinal motility. Curr. Opin. Endocrinol. Diabetes Obes. 2019 doi: 10.1097/MED.0000000000000449.
    1. Roman C.W., Derkach V.A., Palmiter R.D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 2016;7:11905. doi: 10.1038/ncomms11905.
    1. Chen R., Zhang Y.-Y., Lan J.-N., Liu H.-M., Li W., Wu Y., Leng Y., Tang L.-H., Hou J.-B., Sun Q., et al. Ischemic Postconditioning Alleviates Intestinal Ischemia-Reperfusion Injury by Enhancing Autophagy and Suppressing Oxidative Stress through the Akt/GSK-/Nrf2 Pathway in Mice. Oxidative Med. Cell. Longev. 2020;2020:1–14. doi: 10.1155/2020/6954764.
    1. Fox E.A., Powley T.L. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 1985;341:269–282. doi: 10.1016/0006-8993(85)91066-2.
    1. Shapiro R.E., Miselis R.R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 1985;238:473–488. doi: 10.1002/cne.902380411.
    1. Browning K.N., Renehan W.E., Travagli R.A. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J. Physiol. 1999;517 Pt 2:521–532. doi: 10.1111/j.1469-7793.1999.0521t.x.
    1. Fogel R., Zhang X., Renehan W.E. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 1996;364:78–91. doi: 10.1002/(SICI)1096-9861(19960101)364:1<78::AID-CNE7>;2-P.
    1. Valenzuela I.M., Browning K.N., Travagli R.A. Morphological differences between planes of section do not influence the electrophysiological properties of identified rat dorsal motor nucleus of the vagus neurons. Brain Res. 2004;1003:54–60. doi: 10.1016/j.brainres.2003.10.076.
    1. Travagli R.A., Hermann G.E., Browning K.N., Rogers R.C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 2006;68:279–305. doi: 10.1146/annurev.physiol.68.040504.094635.
    1. Cruz M.T., Murphy E.C., Sahibzada N., Verbalis J.G., Gillis R.A. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R291–R307. doi: 10.1152/ajpregu.00863.2005.
    1. Krowicki Z.K., Sharkey K.A., Serron S.C., Nathan N.A., Hornby P.J. Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function. J. Comp. Neurol. 1997;377:49–69. doi: 10.1002/(SICI)1096-9861(19970106)377:1<49::AID-CNE6>;2-J.
    1. Rogers R.C., Hermann G.E., Travagli R.A. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J. Physiol. 1999;514 Pt 2:369–383. doi: 10.1111/j.1469-7793.1999.369ae.x.
    1. Rogers R.C., Travagli R.A., Hermann G.E. Noradrenergic neurons in the rat solitary nucleus participate in the esophageal-gastric relaxation reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R479–R489. doi: 10.1152/ajpregu.00155.2003.
    1. Guo J.J., Browning K.N., Rogers R.C., Travagli R.A. Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;280:G361–G367. doi: 10.1152/ajpgi.2001.280.3.G361.
    1. Babic T., Browning K.N., Travagli R.A. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G21–G32. doi: 10.1152/ajpgi.00363.2010.
    1. Bhagat R., Fortna S.R., Browning K.N. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity. J. Physiol. 2015;593:285–303. doi: 10.1113/jphysiol.2014.282806.
    1. Williams K.W., Zsombok A., Smith B.N. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology. 2007;148:1868–1881. doi: 10.1210/en.2006-1098.
    1. Fu Y., Kaneko K., Lin H.Y., Mo Q., Xu Y., Suganami T., Ravn P., Fukuda M. Gut Hormone GIP Induces Inflammation and Insulin Resistance in the Hypothalamus. Endocrinology. 2020;161 doi: 10.1210/endocr/bqaa102.
    1. Clyburn C., Browning K.N. Role of astroglia in diet-induced central neuroplasticity. J. Neurophysiol. 2019 doi: 10.1152/jn.00823.2018.
    1. Price C.J., Hoyda T.D., Ferguson A.V. The area postrema: A brain monitor and integrator of systemic autonomic state. Neuroscientist. 2008;14:182–194. doi: 10.1177/1073858407311100.
    1. Babic T., Browning K.N. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur. J. Pharmacol. 2014;722:38–47. doi: 10.1016/j.ejphar.2013.08.047.
    1. Hill D.R., Campbell N.J., Shaw T.M., Woodruff G.N. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J. Neurosci. 1987;7:2967–2976. doi: 10.1523/JNEUROSCI.07-09-02967.1987.
    1. Mercer L.D., Beart P.M. Immunolocalization of CCK1R in rat brain using a new anti-peptide antibody. Neurosci. Lett. 2004;359:109–113. doi: 10.1016/j.neulet.2004.01.045.
    1. Covasa M., Ritter R.C. Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors. Brain Res. 2005;1051:155–163. doi: 10.1016/j.brainres.2005.06.003.
    1. Yamamoto H., Kishi T., Lee C.E., Choi B.J., Fang H., Hollenberg A.N., Drucker D.J., Elmquist J.K. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J. Neurosci. 2003;23:2939–2946. doi: 10.1523/JNEUROSCI.23-07-02939.2003.
    1. Bonaz B., Taylor I., Taché Y. Peripheral peptide YY induces c-fos-like immunoreactivity in the rat brain. Neurosci. Lett. 1993;163:77–80. doi: 10.1016/0304-3940(93)90233-B.
    1. Gilg S., Lutz T.A. The orexigenic effect of peripheral ghrelin differs between rats of different age and with different baseline food intake, and it may in part be mediated by the area postrema. Physiol. Behav. 2006;87:353–359. doi: 10.1016/j.physbeh.2005.10.015.
    1. Van der Kooy D., Koda L.Y. Organization of the projections of a circumventricular organ: The area postrema in the rat. J. Comp. Neurol. 1983;219:328–338. doi: 10.1002/cne.902190307.
    1. Menani J.V., Thunhorst R.L., Johnson A.K. Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am. J. Physiol. 1996;270:R162–R168. doi: 10.1152/ajpregu.1996.270.1.R162.
    1. Miura M., Takayama K. Circulatory and respiratory responses to glutamate stimulation of the lateral parabrachial nucleus of the cat. J. Auton. Nerv. Syst. 1991;32:121–133. doi: 10.1016/0165-1838(91)90062-8.
    1. Vigier D., Portalier P. Efferent projections of the area postrema demonstrated by autoradiography. Arch. Ital. Biol. 1979;117:308–324.
    1. Andermann M.L., Lowell B.B. toward a wiring diagram understanding of appetite control. Neuron. 2017 doi: 10.1016/j.neuron.2017.06.014.
    1. Kim D.Y., Heo G., Kim M., Kim H., Jin J.A., Kim H.K., Jung S., An M., Ahn B.H., Park J.H., et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature. 2020;580:376–380. doi: 10.1038/s41586-020-2167-2.
    1. Kreisler A.D., Davis E.A., Rinaman L. Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiol. Behav. 2014;136:47–54. doi: 10.1016/j.physbeh.2014.01.015.
    1. Cai H., Haubensak W., Anthony T.E., Anderson D.J. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 2014;17:1240–1248. doi: 10.1038/nn.3767.
    1. Campos C.A., Bowen A.J., Schwartz M.W., Palmiter R.D. Parabrachial CGRP Neurons Control Meal Termination. Cell Metab. 2016;23:811–820. doi: 10.1016/j.cmet.2016.04.006.
    1. Han W., Tellez L.A., Perkins M.H., Perez I.O., Qu T., Ferreira J., Ferreira T.L., Quinn D., Liu Z.W., Gao X.B., et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175:665–678.e623. doi: 10.1016/j.cell.2018.08.049.
    1. Zhu J.N., Yung W.H., Kwok-Chong Chow B., Chan Y.S., Wang J.J. The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res. Rev. 2006;52:93–106. doi: 10.1016/j.brainresrev.2006.01.003.
    1. Dietrichs E., Haines D.E., Røste G.K., Røste L.S. Hypothalamocerebellar and cerebellohypothalamic projections—Circuits for regulating nonsomatic cerebellar activity? Histol. Histopathol. 1994;9:603–614.
    1. Haines D.E., Dietrichs E., Mihailoff G.A., McDonald E.F. The cerebellar-hypothalamic axis: Basic circuits and clinical observations. Int. Rev. Neurobiol. 1997;41:83–107. doi: 10.1016/s0074-7742(08)60348-7.
    1. Cavdar S., San T., Aker R., Sehirli U., Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J. Anat. 2001;198:37–45. doi: 10.1017/S0021878200007172.
    1. Cavdar S., Onat F., Aker R., Sehirli U., San T., Yananli H.R. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J. Anat. 2001;198:463–472. doi: 10.1017/S0021878201007555.
    1. Li B., Zhuang Q.X., Gao H.R., Wang J.J., Zhu J.N. Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats. Brain Struct. Funct. 2017;222:957–971. doi: 10.1007/s00429-016-1257-2.
    1. Zhu J.N., Li H.Z., Ding Y., Wang J.J. Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J. Neurosci. Res. 2006;84:1597–1609. doi: 10.1002/jnr.21059.
    1. Zhu J.N., Guo C.L., Li H.Z., Wang J.J. Dorsomedial hypothalamic nucleus neurons integrate important peripheral feeding-related signals in rats. J. Neurosci. Res. 2007;85:3193–3204. doi: 10.1002/jnr.21420.
    1. Li B., Guo C.L., Tang J., Zhu J.N., Wang J.J. Cerebellar fastigial nuclear inputs and peripheral feeding signals converge on neurons in the dorsomedial hypothalamic nucleus. Neurosignals. 2009;17:132–143. doi: 10.1159/000197913.
    1. Suzuki T., Sugiyama Y., Yates B.J. Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R965–R975. doi: 10.1152/ajpregu.00680.2011.
    1. Mihalache L., Gherasim A., Niţă O., Ungureanu M.C., Pădureanu S.S., Gavril R.S., Arhire L.I. Effects of ghrelin in energy balance and body weight homeostasis. Hormones. 2016;15:186–196. doi: 10.14310/horm.2002.1672.
    1. Teubner B.J., Bartness T.J. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides. 2013;47:20–28. doi: 10.1016/j.peptides.2013.05.005.
    1. Jones E.S., Nunn N., Chambers A.P., Østergaard S., Wulff B.S., Luckman S.M. Modified Peptide YY Molecule Attenuates the Activity of NPY/AgRP Neurons and Reduces Food Intake in Male Mice. Endocrinology. 2019;160:2737–2747. doi: 10.1210/en.2019-00100.
    1. Chronwall B.M. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides. 1985;6(Suppl. 2):1–11. doi: 10.1016/0196-9781(85)90128-7.
    1. DeFalco J., Tomishima M., Liu H., Zhao C., Cai X., Marth J.D., Enquist L., Friedman J.M. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science. 2001;291:2608–2613. doi: 10.1126/science.1056602.
    1. Aklan I., Sayar Atasoy N., Yavuz Y., Ates T., Coban I., Koksalar F., Filiz G., Topcu I.C., Oncul M., Dilsiz P., et al. NTS Catecholamine Neurons Mediate Hypoglycemic Hunger via Medial Hypothalamic Feeding Pathways. Cell Metab. 2020;31:313–326.e315. doi: 10.1016/j.cmet.2019.11.016.
    1. Tsang A.H., Nuzzaci D., Darwish T., Samudrala H., Blouet C. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons. Mol. Metab. 2020;42:101070. doi: 10.1016/j.molmet.2020.101070.
    1. Harris R.B.S. Loss of leptin receptor-expressing cells in the hindbrain decreases forebrain leptin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2020;318:E806–E816. doi: 10.1152/ajpendo.00020.2020.
    1. Swanson L.W., Sawchenko P.E. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 1983;6:269–324. doi: 10.1146/annurev.ne.06.030183.001413.
    1. D’Agostino G., Lyons D.J., Cristiano C., Burke L.K., Madara J.C., Campbell J.N., Garcia A.P., Land B.B., Lowell B.B., Dileone R.J., et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife. 2016;5 doi: 10.7554/eLife.12225.
    1. Luiten P.G., ter Horst G.J., Karst H., Steffens A.B. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 1985;329:374–378. doi: 10.1016/0006-8993(85)90554-2.
    1. Saper C.B., Loewy A.D., Swanson L.W., Cowan W.M. Direct hypothalamo-autonomic connections. Brain Res. 1976;117:305–312. doi: 10.1016/0006-8993(76)90738-1.
    1. Heymann-Mönnikes I., Taché Y., Trauner M., Weiner H., Garrick T. CRF microinjected into the dorsal vagal complex inhibits TRH analog- and kainic acid-stimulated gastric contractility in rats. Brain Res. 1991;554:139–144. doi: 10.1016/0006-8993(91)90181-T.
    1. Lewis M.W., Hermann G.E., Rogers R.C., Travagli R.A. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex. J. Physiol. 2002;543:135–146. doi: 10.1113/jphysiol.2002.019281.
    1. Holmes G.M., Browning K.N., Babic T., Fortna S.R., Coleman F.H., Travagli R.A. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone. J. Physiol. 2013;591:3081–3100. doi: 10.1113/jphysiol.2013.253732.
    1. Peters J.H., McDougall S.J., Kellett D.O., Jordan D., Llewellyn-Smith I.J., Andresen M.C. Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus. J. Neurosci. 2008;28:11731–11740. doi: 10.1523/JNEUROSCI.3419-08.2008.
    1. Richard P., Moos F., Freund-Mercier M.J. Central effects of oxytocin. Physiol. Rev. 1991;71:331–370. doi: 10.1152/physrev.1991.71.2.331.
    1. Zheng H., Patterson L.M., Berthoud H.R. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J. Comp. Neurol. 2005;485:127–142. doi: 10.1002/cne.20515.
    1. Grill H.J., Hayes M.R. Hindbrain Neurons as an Essential Hub in the Neuroanatomically Distributed Control of Energy Balance. Cell Metab. 2012;16:296–309. doi: 10.1016/j.cmet.2012.06.015.
    1. Challet E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 2019;15:393–405. doi: 10.1038/s41574-019-0210-x.
    1. Page A.J., Christie S., Symonds E., Li H. Circadian regulation of appetite and time restricted feeding. Physiol. Behav. 2020;220:112873. doi: 10.1016/j.physbeh.2020.112873.
    1. Min D.K., Tuor U.I., Chelikani P.K. Gastric distention induced functional magnetic resonance signal changes in the rodent brain. Neuroscience. 2011;179:151–158. doi: 10.1016/j.neuroscience.2011.01.051.
    1. Kanoski S.E., Grill H.J. Hippocampus Contributions to Food Intake Control: Mnemonic, Neuroanatomical, and Endocrine Mechanisms. Biol. Psychiatry. 2017;81:748–756. doi: 10.1016/j.biopsych.2015.09.011.
    1. Cenquizca L.A., Swanson L.W. Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J. Comp. Neurol. 2006;497:101–114. doi: 10.1002/cne.20985.
    1. Hsu T.M., Hahn J.D., Konanur V.R., Noble E.E., Suarez A.N., Thai J., Nakamoto E.M., Kanoski S.E. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. Elife. 2015;4 doi: 10.7554/eLife.11190.
    1. Radley J.J., Sawchenko P.E. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J. Neurosci. 2011;31:9683–9695. doi: 10.1523/JNEUROSCI.6040-10.2011.
    1. Hannapel R.C., Henderson Y.H., Nalloor R., Vazdarjanova A., Parent M.B. Ventral hippocampal neurons inhibit postprandial energy intake. Hippocampus. 2017;27:274–284. doi: 10.1002/hipo.22692.
    1. Suarez A.N., Liu C.M., Cortella A.M., Noble E.E., Kanoski S.E. Ghrelin and Orexin Interact to Increase Meal Size Through a Descending Hippocampus to Hindbrain Signaling Pathway. Biol. Psychiatry. 2020;87:1001–1011. doi: 10.1016/j.biopsych.2019.10.012.
    1. Davis E.A., Wald H.S., Suarez A.N., Zubcevic J., Liu C.M., Cortella A.M., Kamitakahara A.K., Polson J.W., Arnold M., Grill H.J., et al. Ghrelin Signaling Affects Feeding Behavior, Metabolism, and Memory through the Vagus Nerve. Curr. Biol. 2020;30:4510–4518.e4516. doi: 10.1016/j.cub.2020.08.069.
    1. Kanoski S.E., Hayes M.R., Greenwald H.S., Fortin S.M., Gianessi C.A., Gilbert J.R., Grill H.J. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology. 2011;36:1859–1870. doi: 10.1038/npp.2011.70.
    1. Hsu T.M., Noble E.E., Liu C.M., Cortella A.M., Konanur V.R., Suarez A.N., Reiner D.J., Hahn J.D., Hayes M.R., Kanoski S.E. A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol. Psychiatry. 2018;23:1555–1565. doi: 10.1038/mp.2017.91.
    1. Henderson Y.O., Smith G.P., Parent M.B. Hippocampal neurons inhibit meal onset. Hippocampus. 2013;23:100–107. doi: 10.1002/hipo.22062.
    1. Parent M.B. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol. Behav. 2016;162:112–119. doi: 10.1016/j.physbeh.2016.03.036.
    1. Van den Burg E.H., Stoop R. Neuropeptide signalling in the central nucleus of the amygdala. Cell Tissue Res. 2019;375:93–101. doi: 10.1007/s00441-018-2862-6.
    1. Wang Y., Kim J., Schmit M.B., Cho T.S., Fang C., Cai H. A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat. Commun. 2019;10:2769. doi: 10.1038/s41467-019-10715-x.
    1. De Lartigue G., Xu C. Mechanisms of vagal plasticity influencing feeding behavior. Brain Res. 2018;1693:146–150. doi: 10.1016/j.brainres.2018.03.030.
    1. Kentish S., Li H., Philp L.K., O’Donnell T.A., Isaacs N.J., Young R.L., Wittert G.A., Blackshaw L.A., Page A.J. Diet-induced adaptation of vagal afferent function. J. Physiol. 2012;590:209–221. doi: 10.1113/jphysiol.2011.222158.
    1. Feinle-Bisset C. Upper gastrointestinal sensitivity to meal-related signals in adult humans—Relevance to appetite regulation and gut symptoms in health, obesity and functional dyspepsia. Physiol. Behav. 2016;162:69–82. doi: 10.1016/j.physbeh.2016.03.021.
    1. Daly D.M., Park S.J., Valinsky W.C., Beyak M.J. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J. Physiol. 2011;589:2857–2870. doi: 10.1113/jphysiol.2010.204594.
    1. Browning K.N., Fortna S.R., Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J. Physiol. 2013;591:2357–2372. doi: 10.1113/jphysiol.2012.249268.
    1. Waise T.M.Z., Toshinai K., Naznin F., NamKoong C., Md Moin A.S., Sakoda H., Nakazato M. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem. Biophys. Res. Commun. 2015;464:1157–1162. doi: 10.1016/j.bbrc.2015.07.097.
    1. Levin B.E., Triscari J., Hogan S., Sullivan A.C. Resistance to diet-induced obesity: Food intake, pancreatic sympathetic tone, and insulin. Am. J. Physiol. 1987;252:R471–R478. doi: 10.1152/ajpregu.1987.252.3.R471.
    1. Lee S.J., Jokiaho A.J., Sanchez-Watts G., Watts A.G. Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018;314:R811–R823. doi: 10.1152/ajpregu.00423.2017.
    1. Rinaman L. Postnatal development of hypothalamic inputs to the dorsal vagal complex in rats. Physiol. Behav. 2003;79:65–70. doi: 10.1016/S0031-9384(03)00105-7.
    1. Levin B.E. Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity. Front. Neuroendocrinol. 2010;31:270–283. doi: 10.1016/j.yfrne.2010.02.005.
    1. Levin B.E. Metabolic imprinting: Critical impact of the perinatal environment on the regulation of energy homeostasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006;361:1107–1121. doi: 10.1098/rstb.2006.1851.
    1. Bocarsly M.E., Barson J.R., Hauca J.M., Hoebel B.G., Leibowitz S.F., Avena N.M. Effects of perinatal exposure to palatable diets on body weight and sensitivity to drugs of abuse in rats. Physiol. Behav. 2012;107:568–575. doi: 10.1016/j.physbeh.2012.04.024.
    1. Clyburn C., Howe C.A., Arnold A.C., Lang C.H., Travagli R.A., Browning K.N. Perinatal high-fat diet alters development of GABA A receptor subunits in dorsal motor nucleus of vagus. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317:G40–G50. doi: 10.1152/ajpgi.00079.2019.
    1. Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front. Endocrinol. 2020;11:591559. doi: 10.3389/fendo.2020.591559.
    1. Poon K., Mandava S., Chen K., Barson J.R., Buschlen S., Leibowitz S.F. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus. PLoS ONE. 2013;8:e77668. doi: 10.1371/journal.pone.0077668.
    1. Stump M., Guo D.F., Lu K.T., Mukohda M., Cassell M.D., Norris A.W., Rahmouni K., Sigmund C.D. Nervous System Expression of PPARγ and Mutant PPARγ Has Profound Effects on Metabolic Regulation and Brain Development. Endocrinology. 2016;157:4266–4275. doi: 10.1210/en.2016-1524.
    1. Sullivan E.L., Rivera H.M., True C.A., Franco J.G., Baquero K., Dean T.A., Valleau J.C., Takahashi D.L., Frazee T., Hanna G., et al. Maternal and postnatal high-fat diet consumption programs energy balance and hypothalamic melanocortin signaling in nonhuman primate offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;313:R169–R179. doi: 10.1152/ajpregu.00309.2016.
    1. Juan De Solis A., Baquero A.F., Bennett C.M., Grove K.L., Zeltser L.M. Postnatal undernutrition delays a key step in the maturation of hypothalamic feeding circuits. Mol. Metab. 2016;5:198–209. doi: 10.1016/j.molmet.2016.01.003.
    1. Franklin T.B., Saab B.J., Mansuy I.M. Neural mechanisms of stress resilience and vulnerability. Neuron. 2012;75:747–761. doi: 10.1016/j.neuron.2012.08.016.
    1. Ulrich-Lai Y.M., Herman J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009;10:397–409. doi: 10.1038/nrn2647.
    1. Jiang Y., Greenwood-Van Meerveld B., Johnson A.C., Travagli R.A. Role of estrogen and stress on the brain-gut axis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317:G203–G209. doi: 10.1152/ajpgi.00144.2019.
    1. Drossman D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology. 2016 doi: 10.1053/j.gastro.2016.02.032.
    1. Fukudo S. Stress and visceral pain: Focusing on irritable bowel syndrome. Pain. 2013;154(Suppl. 1):S63–S70. doi: 10.1016/j.pain.2013.09.008.
    1. Jiang Y., Travagli R.A. Hypothalamic-vagal oxytocinergic neurocircuitry modulates gastric emptying and motility following stress. J. Physiol. 2020;598:4941–4955. doi: 10.1113/JP280023.
    1. Horvath K., Perman J.A. Autistic disorder and gastrointestinal disease. Curr. Opin. Pediatr. 2002;14:583–587. doi: 10.1097/00008480-200210000-00004.
    1. Chistol L.T., Bandini L.G., Must A., Phillips S., Cermak S.A., Curtin C. Sensory Sensitivity and Food Selectivity in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2018;48:583–591. doi: 10.1007/s10803-017-3340-9.
    1. Ristori M.V., Quagliariello A., Reddel S., Ianiro G., Vicari S., Gasbarrini A., Putignani L. Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. Nutrients. 2019;11:2812. doi: 10.3390/nu11112812.
    1. Lefter R., Ciobica A., Timofte D., Stanciu C., Trifan A. A Descriptive Review on the Prevalence of Gastrointestinal Disturbances and Their Multiple Associations in Autism Spectrum Disorder. Medicina. 2019;56:11. doi: 10.3390/medicina56010011.
    1. Horvath K., Papadimitriou J.C., Rabsztyn A., Drachenberg C., Tildon J.T. Gastrointestinal abnormalities in children with autistic disorder. J. Pediatr. 1999;135:559–563. doi: 10.1016/S0022-3476(99)70052-1.
    1. Rodier P.M., Ingram J.L., Tisdale B., Nelson S., Romano J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 1996;370:247–261. doi: 10.1002/(SICI)1096-9861(19960624)370:2<247::AID-CNE8>;2-2.
    1. Kushki A., Brian J., Dupuis A., Anagnostou E. Functional autonomic nervous system profile in children with autism spectrum disorder. Mol. Autism. 2014;5:39. doi: 10.1186/2040-2392-5-39.
    1. Modahl C., Green L., Fein D., Morris M., Waterhouse L., Feinstein C., Levin H. Plasma oxytocin levels in autistic children. Biol. Psychiatry. 1998;43:270–277. doi: 10.1016/S0006-3223(97)00439-3.
    1. Fetissov S.O., Averina O.V., Danilenko V.N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition. 2019;61:43–48. doi: 10.1016/j.nut.2018.10.030.
    1. Cersosimo M.G., Benarroch E.E. Neural control of the gastrointestinal tract: Implications for Parkinson disease. Mov. Disord. 2008;23:1065–1075. doi: 10.1002/mds.22051.
    1. Grinberg L.T., Rueb U., Alho A.T., Heinsen H. Brainstem pathology and non-motor symptoms in PD. J. Neurol. Sci. 2010;289:81–88. doi: 10.1016/j.jns.2009.08.021.
    1. Jellinger K.A. Synuclein deposition and non-motor symptoms in Parkinson disease. J. Neurol. Sci. 2011;310:107–111. doi: 10.1016/j.jns.2011.04.012.
    1. Natale G., Pasquali L., Ruggieri S., Paparelli A., Fornai F. Parkinson’s disease and the gut: A well known clinical association in need of an effective cure and explanation. Neurogastroenterol. Motil. 2008;20:741–749. doi: 10.1111/j.1365-2982.2008.01162.x.
    1. Travagli R.A., Browning K.N., Camilleri M. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 2020 doi: 10.1038/s41575-020-0339-z.
    1. Braak H., Braak E. Pathoanatomy of Parkinson’s disease. J. Neurol. 2000;247(Suppl. 2):II3–II10. doi: 10.1007/PL00007758.
    1. Anselmi L., Toti L., Bove C., Hampton J., Travagli R.A. A Nigro-Vagal Pathway Controls Gastric Motility and Is Affected in a Rat Model of Parkinsonism. Gastroenterology. 2017;153:1581–1593. doi: 10.1053/j.gastro.2017.08.069.
    1. Toti L., Travagli R.A. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;307:G1013–G1023. doi: 10.1152/ajpgi.00258.2014.
    1. Bove C., Travagli R.A. Neurophysiology of the brain stem in Parkinson’s disease. J. Neurophysiol. 2019;121:1856–1864. doi: 10.1152/jn.00056.2019.
    1. Tan H.-E., Sisti A.C., Jin H., Vignovich M., Villavicencio M., Tsang K.S., Goffer Y., Zuker C.S. The gut-brain axis mediates sugar preference. Nature. 2020;580:511–516. doi: 10.1038/s41586-020-2199-7.
    1. Aguilera-Lizarraga J., Florens M.V., Viola M.F., Jain P., Decraecker L., Appeltans I., Cuende-Estevez M., Fabre N., Van Beek K., Perna E., et al. Local immune response to food antigens drives-meal-induced abdominal pain. Nature. 2021;591:151–156. doi: 10.1038/s41586-020-03118-2.
    1. Worthington J.J., Reimann F., Gribble F.M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018;11:3–20. doi: 10.1038/mi.2017.73.
    1. Powley T.L., Jaffey D.M., McAdams J., Baronowsky E.A., Black D., Chesney L., Evans C., Phillips R.J. Vagal innervation of the stomach reassessed: Brain-gut connectome uses smart terminals. Ann. N. Y. Acad. Sci. 2019;1451:14–30. doi: 10.1111/nyas.14138.

Source: PubMed

3
Předplatit