Antibiotics, gut microbiota, and Alzheimer's disease

Francesco Angelucci, Katerina Cechova, Jana Amlerova, Jakub Hort, Francesco Angelucci, Katerina Cechova, Jana Amlerova, Jakub Hort

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease whose various pathophysiological aspects are still being investigated. Recently, it has been hypothesized that AD may be associated with a dysbiosis of microbes in the intestine. In fact, the intestinal flora is able to influence the activity of the brain and cause its dysfunctions.Given the growing interest in this topic, the purpose of this review is to analyze the role of antibiotics in relation to the gut microbiota and AD. In the first part of the review, we briefly review the role of gut microbiota in the brain and the various theories supporting the hypothesis that dysbiosis can be associated with AD pathophysiology. In the second part, we analyze the possible role of antibiotics in these events. Antibiotics are normally used to remove or prevent bacterial colonization in the human body, without targeting specific types of bacteria. As a result, broad-spectrum antibiotics can greatly affect the composition of the gut microbiota, reduce its biodiversity, and delay colonization for a long period after administration. Thus, the action of antibiotics in AD could be wide and even opposite, depending on the type of antibiotic and on the specific role of the microbiome in AD pathogenesis.Alteration of the gut microbiota can induce changes in brain activity, which raise the possibility of therapeutic manipulation of the microbiome in AD and other neurological disorders. This field of research is currently undergoing great development, but therapeutic applications are still far away. Whether a therapeutic manipulation of gut microbiota in AD could be achieved using antibiotics is still not known. The future of antibiotics in AD depends on the research progresses in the role of gut bacteria. We must first understand how and when gut bacteria act to promote AD. Once the role of gut microbiota in AD is well established, one can think to induce modifications of the gut microbiota with the use of pre-, pro-, or antibiotics to produce therapeutic effects.

Keywords: Alzheimer’s disease; Antibiotics; Gut microbiota; Neuroinflammation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic representation of the role of microbiota-gut-brain axis in Alzheimer’s disease. Good bacteria probiotics are capable to stabilize digestive pH, reduce inflammation, and increase neuroprotective molecules, such as brain-derived neurotrophic factor (BDNF). These effects lead to improved cognition and reduced Aβ plaque formation in AD animal models. In contrast, impaired microbiota dysbiosis can induce neuroinflammation and reduce the expression of BDNF and NMDA receptor, leading to cognitive impairment, mood disorders, and higher levels of Aβ42. Antibiotics, by affecting gut microbiota composition, interact with this circuit and produce different effects, depending on their microbiome target

References

    1. Viña J, Sanz-Ros J. Alzheimer’s disease: only prevention makes sense. Eur J Clin Invest. 2018;48(10):e13005. doi: 10.1111/eci.13005.
    1. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci. 2018;19:687–700. doi: 10.1038/s41583-018-0067-3.
    1. Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of amyloid beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox. Res. 2018;34(3):733–748. doi: 10.1007/s12640-018-9895-1.
    1. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimer’s Dis. 2017;58:1–15. doi: 10.3233/JAD-161141.
    1. Gareau Mélanie G. Advances in Experimental Medicine and Biology. New York, NY: Springer New York; 2014. Microbiota-Gut-Brain Axis and Cognitive Function; pp. 357–371.
    1. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. 2017;17 Available from: 10.1007/s11910-017-0802-6.
    1. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement. 2016;12:719–732. doi: 10.1016/j.jalz.2016.02.010.
    1. Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J Nutr Biochem. 2018;61:111–128. doi: 10.1016/j.jnutbio.2018.07.010.
    1. Daliri EB-M, Tango CN, Lee BH, Oh D-H. Human microbiome restoration and safety. Int J Med Microbiol. 2018;308:487–497. doi: 10.1016/j.ijmm.2018.05.002.
    1. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–742. doi: 10.1038/nrmicro2876.
    1. Wekerle H. The gut–brain connection: triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology. 2016;55:ii68–ii75. doi: 10.1093/rheumatology/kew353.
    1. Briguglio M, Dell’Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C, et al. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients. 2018;10:591. doi: 10.3390/nu10050591.
    1. Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89. doi: 10.1016/j.gtc.2016.09.007.
    1. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49. doi: 10.3389/fnins.2018.00049.
    1. Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J (Engl). 2016.
    1. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
    1. Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp Biol Med. 2017;243:159–165. doi: 10.1177/1535370217743766.
    1. Zac-Varghese S, Tan T, Bloom SR. Hormonal interactions between gut and brain. Discov Med. 2010;10(55):543–552.
    1. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17.
    1. Links between gut microbes and depression strengthened. Nature. 2019;566(7742):7.
    1. Galland L. The gut microbiome and the brain. J Med Food. 2014;17:1261–1272. doi: 10.1089/jmf.2014.7000.
    1. Alam R, Abdolmaleky HM, Zhou J-R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet Part B Neuropsychiatr Genet. 2017;174:651–660. doi: 10.1002/ajmg.b.32567.
    1. Johnson KV-A, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16:647–655. doi: 10.1038/s41579-018-0014-3.
    1. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2010;60:307–317. doi: 10.1136/gut.2009.202515.
    1. Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics. 2018;15:135–145. doi: 10.1007/s13311-017-0598-8.
    1. Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics. 2017;15:36–59. doi: 10.1007/s13311-017-0585-0.
    1. Braakman HMH, van Ingen J. Can epilepsy be treated by antibiotics? J Neurol. 2018;265:1934–1936. doi: 10.1007/s00415-018-8943-3.
    1. Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S, et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord. 2018;34:396–405. doi: 10.1002/mds.27581.
    1. Kong G, Cao K-AL, Judd LM, Li S, Renoir T, Hannan AJ. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2018; Available from: 10.1016/j.nbd.2018.09.001.
    1. Kirby T, Ochoa-Repáraz J. The gut microbiome in multiple sclerosis: a potential therapeutic avenue. Med Sci. 2018;6:69.
    1. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–153. doi: 10.1111/jnc.13607.
    1. Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem. 2015;136:457–474. doi: 10.1111/jnc.13411.
    1. Bagyinszky E, Van GV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci. 2017;376:242–254. doi: 10.1016/j.jns.2017.03.031.
    1. Wang M-M, Miao D, Cao X-P, Tan L, Tan L. Innate immune activation in Alzheimer’s disease. Ann Transl Med. 2018;6:177. doi: 10.21037/atm.2018.04.20.
    1. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016.
    1. Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One. 2010;5(11):e13950. doi: 10.1371/journal.pone.0013950.
    1. Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140(3):792–803.
    1. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–1099. doi: 10.1038/ng.439.
    1. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83(5):623–632. doi: 10.1016/j.ajhg.2008.10.008.
    1. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160(6):1061–1071. doi: 10.1016/j.cell.2015.01.049.
    1. Crehan H, Hardy J, Pocock J. Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 2013;54:139–149. doi: 10.1016/j.nbd.2013.02.003.
    1. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, et al. Alzheimer’s disease risk gene cd33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78(4):631–643. doi: 10.1016/j.neuron.2013.04.014.
    1. Clark IA, Vissel B. Amyloid β: one of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer’s disease. Br J Pharmacol. 2015;172:3714–3727. doi: 10.1111/bph.13181.
    1. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One. 2010;5:e9505. doi: 10.1371/journal.pone.0009505.
    1. Games D, Adams D, Alessandrini R, Barbour R, Borthelette P, Blackwell C, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature. 1995;373(6514):523–527. doi: 10.1038/373523a0.
    1. Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124(5):307–321. doi: 10.3109/00207454.2013.833510.
    1. Dong Yuan, Li Xiaoheng, Cheng Jinbo, Hou Lin. Drug Development for Alzheimer’s Disease: Microglia Induced Neuroinflammation as a Target? International Journal of Molecular Sciences. 2019;20(3):558. doi: 10.3390/ijms20030558.
    1. Pretorius E, Bester J, Kell DB. A bacterial component to Alzheimer’s-type dementia seen via a systems biology approach that links iron dysregulation and inflammagen shedding to disease. J Alzheimers Dis. 2016;53:1237–1256. doi: 10.3233/JAD-160318.
    1. Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci [Internet]. Springer Nature. 2016;59:1006–1023. doi: 10.1007/s11427-016-5083-9.
    1. Ashraf Ghulam M., Tarasov Vadim V., Makhmutovа Alfiya, Chubarev Vladimir N., Avila-Rodriguez Marco, Bachurin Sergey O., Aliev Gjumrakch. The Possibility of an Infectious Etiology of Alzheimer Disease. Molecular Neurobiology. 2018;56(6):4479–4491. doi: 10.1007/s12035-018-1388-y.
    1. Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement. 2018;14:1602–1614. doi: 10.1016/j.jalz.2018.06.3040.
    1. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14:877–882. doi: 10.1016/j.jamda.2013.05.009.
    1. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017;7 Available from: 10.1038/srep41802.
    1. Roubaud-Baudron C, Quadrio I, Krolak-Salmon P, Mégraud F, Salles N. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging. 2011.
    1. Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22(12):1519–1525. doi: 10.1111/ene.12477.
    1. Wang Xiu-Lian, Zeng Ji, Yang Yang, Xiong Yan, Zhang Zhi-Hua, Qiu Mei, Yan Xiong, Sun Xu-Ying, Tuo Qing-Zhang, Liu Rong, Wang Jian-Zhi. Helicobacter pylori Filtrate Induces Alzheimer-Like Tau Hyperphosphorylation by Activating Glycogen Synthase Kinase-3β. Journal of Alzheimer's Disease. 2014;43(1):153–165. doi: 10.3233/JAD-140198.
    1. Pisa Di AR, Fernández-Fernández AM, Rábano A, Carrasco L. Polymicrobial infections in brain tissue from Alzheimer’s disease patients. Sci Rep. 2017;7(1):5559. doi: 10.1038/s41598-017-05903-y.
    1. Zhao Y, Jaber VLW. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol. 2017;7:318. doi: 10.3389/fcimb.2017.00318.
    1. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–68. doi: 10.1016/j.neurobiolaging.2016.08.019.
    1. Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB J. 2017;31(8):3216–3226. doi: 10.1096/fj.201700360.
    1. Barnes LL, Capuano AW, Aiello AE, Turner AD, Yolken RH, Torrey EF, et al. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J Infect Dis. 2015;211(2):230–237. doi: 10.1093/infdis/jiu437.
    1. Bernstein HG, Keilhoff G, Dobrowolny HSJ. Binding varicella zoster virus: an underestimated facet of insulin-degrading enzyme’s implication for Alzheimer’s disease pathology? Eur Arch Psychiatry Clin Neurosci. 2019.
    1. Lin WR, Casas I, Wilcock GK, Itzhaki RF. Neurotropic viruses and Alzheimer’s disease: a search for varicella zoster virus DNA by the polymerase chain reaction. J Neurol Neurosurg Psychiatry. 2008.
    1. L H, O J, W B, J A, E S, H G, et al. Interaction between Cytomegalovirus and herpes simplex virus type 1 associated with the risk of Alzheimer’s disease development. J Alzheimer’s Dis. 2018.
    1. Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41:2819–2835. doi: 10.1007/s11064-016-2039-1.
    1. Marques C, Meireles M, Faria A, Calhau C. High-fat diet–induced dysbiosis as a cause of neuroinflammation. Biol Psychiatry. 2016;80:e3–e4. doi: 10.1016/j.biopsych.2015.10.027.
    1. Li H, Sun J, Du J, Wang F, Fang R, Yu C, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil. 2017;30:e13260. doi: 10.1111/nmo.13260.
    1. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082.
    1. Caracciolo B, Xu W, Collins S, Fratiglioni L. Cognitive decline, dietary factors and gut–brain interactions. Mech Ageing Dev. 2014;136(137):59–69. doi: 10.1016/j.mad.2013.11.011.
    1. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2006;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6 Available from: 10.1038/srep30028.
    1. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–977. doi: 10.1038/nn.4030.
    1. Ege MJ. The hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. 2017;14:S348–S353. doi: 10.1513/AnnalsATS.201702-139AW.
    1. Browne TC, McQuillan K, McManus RM, O’Reilly J-A, Mills KHG, Lynch MA. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol. 2013;190:2241–2251. doi: 10.4049/jimmunol.1200947.
    1. Pellicanò M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, et al. Immune profiling of Alzheimer patients. J Neuroimmunol. 2012;242:52–59. doi: 10.1016/j.jneuroim.2011.11.005.
    1. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Calvo MG, et al. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2010;21:927–938. doi: 10.3233/JAD-2010-091696.
    1. Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain. 2016;139:1237–1251. doi: 10.1093/brain/awv408.
    1. Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, et al. Dramatic shifts in circulating cd4 but not cd8 t cell subsets in mild alzheimer’s disease. J Alzheimer’s Dis. 2009;17:91–103. doi: 10.3233/JAD-2009-1015.
    1. Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimer’s Dis. 2008;13:393–405. doi: 10.3233/JAD-2008-13405.
    1. Laitinen MH, Ngandu T, Rovio S, Helkala E-L, Uusitalo U, Viitanen M, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22:99–107. doi: 10.1159/000093478.
    1. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–1915. doi: 10.1136/gutjnl-2016-312297.
    1. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018; Available from: 10.1093/femsre/fuy018.
    1. Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun. 2016;56:140–155. doi: 10.1016/j.bbi.2016.02.020.
    1. Neufeld NH, Mohamed NS, Grujich N, Shulman K. Acute neuropsychiatric symptoms associated with antibiotic treatment of Helicobacter pylori infections. J Psychiatr Pract. 2017;23:25–35. doi: 10.1097/PRA.0000000000000205.
    1. Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9 Available from: 10.1038/s41467-018-05336-9.
    1. Wang T, Hu X, Liang S, Li W, Wu X, Wang L, et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes. 2015;6:707–717. doi: 10.3920/BM2014.0177.
    1. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2010;23:255–e119. doi: 10.1111/j.1365-2982.2010.01620.x.
    1. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.e3. doi: 10.1053/j.gastro.2011.04.052.
    1. Ravelli KG, Rosário B dos A, Camarini R, Hernandes MS, Britto LR. Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: neurochemical and behavioral characterization in mice. Neurotox Res. 2016;31:327–333. doi: 10.1007/s12640-016-9684-7.
    1. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015:5.47.1, 5.47.20 Available from: 10.1002/0471141755.ph0547s70.
    1. Walker J, Harrison F. Shared neuropathological characteristics of obesity, type 2 diabetes and Alzheimer’s disease: impacts on cognitive decline. Nutrients. 2015;7:7332–7357. doi: 10.3390/nu7095341.
    1. Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience. 2013;240:287–296. doi: 10.1016/j.neuroscience.2013.02.055.
    1. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2013;19:146–148. doi: 10.1038/mp.2013.65.
    1. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–173. doi: 10.1016/j.bbi.2015.04.004.
    1. Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21 Available from: 10.1186/s13054-017-1856-1.
    1. Kountouras J, Boziki M, Gavalas E, Zavos C, Grigoriadis N, Deretzi G, et al. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J Neurol. 2009;256:758–767. doi: 10.1007/s00415-009-5011-z.
    1. Yulug B, Hanoglu L, Ozansoy M, Isık D, Kilic U, Kilic E, et al. Therapeutic role of rifampicin in Alzheimer’s disease. Psychiatry Clin Neurosci. 2018;72:152–159. doi: 10.1111/pcn.12637.
    1. Budni J., L. Garcez M., de Medeiros J., Cassaro E., Bellettini-Santos T., Mina F., Quevedo J. The Anti-Inflammatory Role of Minocycline in Alzheimers Disease. Current Alzheimer Research. 2016;13(12):1319–1329. doi: 10.2174/1567205013666160819124206.
    1. Wang C, Yu J-T, Miao D, Wu Z-C, Tan M-S, Tan L. Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol Neurobiol. 2013;49:120–135. doi: 10.1007/s12035-013-8505-8.
    1. Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal d-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl). 2018;235(5):1463–1477. doi: 10.1007/s00213-018-4858-z.
    1. Tsai GE, Falk WE, Gunther J, Coyle JT. Improved cognition in Alzheimer’s disease with short-term D-cycloserine treatment. Am J Psychiatry. 1999;156(3):467–469.
    1. Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc. 2004;52:381–387. doi: 10.1111/j.1532-5415.2004.52109.x.
    1. Molloy DW, Standish TI, Zhou Q, Guyatt G. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer’s disease: the DARAD trial. Int J Geriatr Psychiatry. 2012;28:463–470. doi: 10.1002/gps.3846.
    1. Jones R, Laake K, Øksengård AR. D-cycloserine for Alzheimer’s disease. Cochrane Database Syst Rev. 2002; Available from: 10.1002/14651858.cd003153.
    1. Richardson A, Galvan V, Lin A-L, Oddo S. How longevity research can lead to therapies for Alzheimer’s disease: the rapamycin story. Exp Gerontol. 2015;68:51–58. doi: 10.1016/j.exger.2014.12.002.
    1. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol. Res. 2018.
    1. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013.
    1. Akbari E, Asemi Z, Kakhaki RD, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2016.
    1. Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, et al. Lactobacillus and bifidobacterium ameliorate memory and learning deficits and oxidative stress in Aβ (1-42) injected Rats. Appl Physiol Nutr Metab. 2018.
    1. Abraham D, Feher J, Scuderi GL, Szabo D, Dobolyi A, Cservenak M, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome. Exp Gerontol. 2019.
    1. Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, et al. Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci. 2017.
    1. Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science (80- ) 2018;362:776–780. doi: 10.1126/science.aau5812.
    1. Yang B-G, Hur KY, Lee M-S. Alterations in gut microbiota and immunity by dietary fat. Yonsei Med J. 2017;58:1083. doi: 10.3349/ymj.2017.58.6.1083.
    1. Hillemacher T, Bachmann O, Kahl KG, Frieling H. Alcohol, microbiome, and their effect on psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:105–115. doi: 10.1016/j.pnpbp.2018.04.015.
    1. Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Arch Microbiol. 2018;200:677–684. doi: 10.1007/s00203-018-1506-2.
    1. Kaczmarek JL, Thompson SV, Holscher HD. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr Rev. 2017;75:673–682. doi: 10.1093/nutrit/nux036.

Source: PubMed

3
Předplatit