Pivotal Shigella Vaccine Efficacy Trials-Study Design Considerations from a Shigella Vaccine Trial Design Working Group

Patricia B Pavlinac, Elizabeth T Rogawski McQuade, James A Platts-Mills, Karen L Kotloff, Carolyn Deal, Birgitte K Giersing, Richard A Isbrucker, Gagandeep Kang, Lyou-Fu Ma, Calman A MacLennan, Peter Patriarca, Duncan Steele, Kirsten S Vannice, Patricia B Pavlinac, Elizabeth T Rogawski McQuade, James A Platts-Mills, Karen L Kotloff, Carolyn Deal, Birgitte K Giersing, Richard A Isbrucker, Gagandeep Kang, Lyou-Fu Ma, Calman A MacLennan, Peter Patriarca, Duncan Steele, Kirsten S Vannice

Abstract

Vaccine candidates for Shigella are approaching phase 3 clinical trials in the target population of young children living in low- and middle-income countries. Key study design decisions will need to be made to maximize the success of such trials and minimize the time to licensure and implementation. We convened an ad hoc working group to identify the key aspects of trial design that would meet the regulatory requirements to achieve the desired indication of prevention of moderate or severe shigellosis due to strains included in the vaccine. The proposed primary endpoint of pivotal Shigella vaccine trials is the efficacy of the vaccine against the first episode of acute moderate or severe diarrhea caused by the Shigella strains contained within the vaccine. Moderate or severe shigellosis could be defined by a modified Vesikari score with dysentery and molecular detection of vaccine-preventable Shigella strains. This report summarizes the rationale and current data behind these considerations, which will evolve as new data become available and after further review and consultation by global regulators and policymakers.

Keywords: Shigella; low and middle-income countries; pediatrics; vaccine trial design.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Liu J., Platts-Mills J.A., Juma J., Kabir F., Nkeze J., Okoi C., Operario D.J., Uddin J., Ahmed S., Alonso P.L., et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet. 2016;388:1291–1301. doi: 10.1016/S0140-6736(16)31529-X.
    1. Platts-Mills J.A., Liu J., Rogawski E.T., Kabir F., Lertsethtakarn P., Siguas M., Khan S.S., Praharaj I., Murei A., Nshama R., et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: A reanalysis of the MAL-ED cohort study. Lancet Glob. Health. 2018;6:e1309–e1318. doi: 10.1016/S2214-109X(18)30349-8.
    1. Pholwat S., Liu J., Taniuchi M., Haque R., Alam M.M., Faruque A.S.G., Ferdous T., Ara R., Platts-Mills J.A., Houpt E.R. Use of Molecular Methods To Detect Shigella and Infer Phenotypic Resistance in a Shigella Treatment Study. J. Clin. Microbiol. 2022;60:e0177421. doi: 10.1128/JCM.01774-21.
    1. Schnee A.E., Haque R., Taniuchi M., Uddin M.J., Alam M.M., Liu J., Rogawski E.T., Kirkpatrick B., Houpt E.R., Petri W.A., Jr., et al. Identification of Etiology-Specific Diarrhea Associated With Linear Growth Faltering in Bangladeshi Infants. Am. J. Epidemiol. 2018;187:2210–2218. doi: 10.1093/aje/kwy106.
    1. Platts-Mills J.A., Houpt E.R., Liu J., Zhang J., Guindo O., Sayinzoga-Makombe N., McMurry T.L., Elwood S., Langendorf C., Grais R.F., et al. Etiology and Incidence of Moderate-to-Severe Diarrhea in Young Children in Niger. J. Pediatric Infect. Dis. Soc. 2021;10:1062–1070. doi: 10.1093/jpids/piab080.
    1. Praharaj I., Platts-Mills J.A., Taneja S., Antony K., Yuhas K., Flores J., Cho I., Bhandari N., Revathy R., Bavdekar A., et al. Diarrheal Etiology and Impact of Coinfections on Rotavirus Vaccine Efficacy Estimates in a Clinical Trial of a Monovalent Human-Bovine (116E) Oral Rotavirus Vaccine, Rotavac, India. Clin. Infect. Dis. 2019;69:243–250. doi: 10.1093/cid/ciy896.
    1. Collaborators G.B.D. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018;18:1211–1228. doi: 10.1016/S1473-3099(18)30362-1.
    1. Rogawski E.T., Liu J., Platts-Mills J.A., Kabir F., Lertsethtakarn P., Siguas M., Khan S.S., Praharaj I., Murei A., Nshama R., et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: Longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health. 2018;6:e1319–e1328. doi: 10.1016/S2214-109X(18)30351-6.
    1. Nasrin D., Blackwelder W.C., Sommerfelt H., Wu Y., Farag T.H., Panchalingam S., Biswas K., Saha D., Hossain M.J., Sow S.O., et al. Pathogens associated with linear growth faltering in children with diarrhea and impact of antibiotic treatment: The Global Enteric Multicenter Study. J. Infect. Dis. 2021;224:S848–S855. doi: 10.1093/infdis/jiab434.
    1. World Health Organization . Preferred Product Characteristics for Vaccines against Shigella. WHO; Geneva, Switzerland: 2021. [(accessed on 25 December 2021)]. Available online: .
    1. Livio S., Strockbine N.A., Panchalingam S., Tennant S.M., Barry E.M., Marohn M.E., Antonio M., Hossain A., Mandomando I., Ochieng J.B., et al. Shigella Isolates From the Global Enteric Multicenter Study Inform Vaccine Development. Clin. Infect. Dis. 2014;59:933–941. doi: 10.1093/cid/ciu468.
    1. World Health Organization Guidance for the Development of Evidence-Based Vaccination Related Recommendations. v8. 2017. [(accessed on 25 December 2021)]. Available online: .
    1. MacLennan C.A., Talaat K.R., Kaminski R.W., Cohen D., Riddle M.S., Giersing B.K. Critical needs in advancing Shigella vaccines for global health. J. Infect. Dis. 2021 doi: 10.1093/infdis/jiab462.
    1. Kotloff K.L., Blackwelder W.C., Nasrin D., Nataro J.P., Farag T.H., van Eijk A., Adegbola R.A., Alonso P.L., Breiman R.F., Faruque A.S., et al. The Global Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children in developing countries: Epidemiologic and clinical methods of the case/control study. Clin. Infect. Dis. 2012;55((Suppl. S4)):S232–S245. doi: 10.1093/cid/cis753.
    1. Porter C.K., Gutierrez R.L., Kotloff K.L. Clinical endpoints for efficacy studies. Vaccine. 2019;37:4814–4822. doi: 10.1016/j.vaccine.2019.03.051.
    1. Kotloff K.L., Platts-Mills J.A., Nasrin D., Roose A., Blackwelder W.C., Levine M.M. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine. 2017;35:6783–6789. doi: 10.1016/j.vaccine.2017.07.036.
    1. Black S., Shinefield H., Fireman B., Lewis E., Ray P., Hansen J.R., Elvin L., Ensor K.M., Hackell J., Siber G., et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 2000;19:187–195. doi: 10.1097/00006454-200003000-00003.
    1. Vesikari T., Matson D.O., Dennehy P., Van Damme P., Santosham M., Rodriguez Z., Dallas M.J., Heyse J.F., Goveia M.G., Black S.B., et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med. 2006;354:23–33. doi: 10.1056/NEJMoa052664.
    1. Formal S.B., Oaks E.V., Olsen R.E., Wingfield-Eggleston M., Snoy P.J., Cogan J.P. Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J. Infect. Dis. 1991;164:533–537. doi: 10.1093/infdis/164.3.533.
    1. Kotloff K.L., Riddle M.S., Platts-Mills J.A., Pavlinac P., Zaidi A.K.M. Shigellosis. Lancet. 2018;391:801–812. doi: 10.1016/S0140-6736(17)33296-8.
    1. Noriega F.R., Liao F.M., Maneval D.R., Ren S., Formal S.B., Levine M.M. Strategy for cross-protection among Shigella flexneri serotypes. Infect. Immun. 1999;67:782–788. doi: 10.1128/IAI.67.2.782-788.1999.
    1. Rogawski McQuade E.T., Liu J., Kang G., Kosek M.N., Lima A.A.M., Bessong P.O., Samie A., Haque R., Mduma E.R., Shrestha S., et al. Protection From Natural Immunity Against Enteric Infections and Etiology-Specific Diarrhea in a Longitudinal Birth Cohort. J. Infect. Dis. 2020;222:1858–1868. doi: 10.1093/infdis/jiaa031.
    1. Herrington D.A., Van de Verg L., Formal S.B., Hale T.L., Tall B.D., Cryz S.J., Tramont E.C., Levine M.M. Studies in volunteers to evaluate candidate Shigella vaccines: Further experience with a bivalent Salmonella typhi-Shigella sonnei vaccine and protection conferred by previous Shigella sonnei disease. Vaccine. 1990;8:353–357. doi: 10.1016/0264-410X(90)90094-3.
    1. Ferreccio C., Prado V., Ojeda A., Cayyazo M., Abrego P., Guers L., Levine M.M. Epidemiologic patterns of acute diarrhea and endemic Shigella infections in children in a poor periurban setting in Santiago, Chile. Am. J. Epidemiol. 1991;134:614–627. doi: 10.1093/oxfordjournals.aje.a116134.
    1. Kotloff K.L., Nataro J.P., Blackwelder W.C., Nasrin D., Farag T.H., Panchalingam S., Wu Y., Sow S.O., Sur D., Breiman R.F., et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet. 2013;382:209–222. doi: 10.1016/S0140-6736(13)60844-2.
    1. Pavlinac P.B., Platts-Mills J.A., Tickell K.D., Liu J., Juma J., Kabir F., Nkeze J., Okoi C., Operario D.J., Uddin J., et al. The Clinical Presentation of Culture-positive and Culture-negative, Quantitative Polymerase Chain Reaction (qPCR)-Attributable Shigellosis in the Global Enteric Multicenter Study and Derivation of a Shigella Severity Score: Implications for Pediatric Shigella Vaccine Trials. Clin. Infect. Dis. 2021;73:e569–e579. doi: 10.1093/cid/ciaa1545.
    1. Huskins W.C., Griffiths J.K., Faruque A.S., Bennish M.L. Shigellosis in neonates and young infants. J. Pediatr. 1994;125:14–22. doi: 10.1016/S0022-3476(94)70115-6.
    1. World Health Organization WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. [(accessed on 22 October 2021)]. Available online: .
    1. Chisenga C.C., Bosomprah S., Simuyandi M., Mwila-Kazimbaya K., Chilyabanyama O.N., Laban N.M., Bialik A., Asato V., Meron-Sudai S., Frankel G., et al. Shigella-specific antibodies in the first year of life among Zambian infants: A longitudinal cohort study. PLoS ONE. 2021;16:e0252222. doi: 10.1371/journal.pone.0252222.
    1. Passwell J.H., Ashkenazi S., Banet-Levi Y., Ramon-Saraf R., Farzam N., Lerner-Geva L., Even-Nir H., Yerushalmi B., Chu C., Shiloach J., et al. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1-4-year-old Israeli children. Vaccine. 2010;28:2231–2235. doi: 10.1016/j.vaccine.2009.12.050.
    1. Talaat K.R., Alaimo C., Martin P., Bourgeois A.L., Dreyer A.M., Kaminski R.W., Porter C.K., Chakraborty S., Clarkson K.A., Brubaker J., et al. Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection. EBioMedicine. 2021;66:103310. doi: 10.1016/j.ebiom.2021.103310.
    1. Jin C., Gibani M.M., Moore M., Juel H.B., Jones E., Meiring J., Harris V., Gardner J., Nebykova A., Kerridge S.A., et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: A randomised controlled, phase 2b trial. Lancet. 2017;390:2472–2480. doi: 10.1016/S0140-6736(17)32149-9.
    1. Armah G.E., Sow S.O., Breiman R.F., Dallas M.J., Tapia M.D., Feikin D.R., Binka F.N., Steele A.D., Laserson K.F., Ansah N.A., et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: A randomised, double-blind, placebo-controlled trial. Lancet. 2010;376:606–614. doi: 10.1016/S0140-6736(10)60889-6.
    1. Ruuska T., Vesikari T. Rotavirus disease in Finnish children: Use of numerical scores for clinical severity of diarrhoeal episodes. Scand. J. Infect. Dis. 1990;22:259–267. doi: 10.3109/00365549009027046.
    1. Clark H.F., Borian F.E., Bell L.M., Modesto K., Gouvea V., Plotkin S.A. Protective effect of WC3 vaccine against rotavirus diarrhea in infants during a predominantly serotype 1 rotavirus season. J. Infect. Dis. 1988;158:570–587. doi: 10.1093/infdis/158.3.570.
    1. Lee G., Penataro Yori P., Paredes Olortegui M., Caulfield L.E., Sack D.A., Fischer-Walker C., Black R.E., Kosek M. An instrument for the assessment of diarrhoeal severity based on a longitudinal community-based study. BMJ Open. 2014;4:e004816. doi: 10.1136/bmjopen-2014-004816.
    1. Levine A.C., Glavis-Bloom J., Modi P., Nasrin S., Rege S., Chu C., Schmid C.H., Alam N.H. Empirically Derived Dehydration Scoring and Decision Tree Models for Children With Diarrhea: Assessment and Internal Validation in a Prospective Cohort Study in Dhaka, Bangladesh. Glob. Health Sci. Pract. 2015;3:405–418. doi: 10.9745/GHSP-D-15-00097.
    1. Freedman S.B., Eltorky M., Gorelick M., Pediatric Emergency Research Canada Gastroenteritis Study, G Evaluation of a gastroenteritis severity score for use in outpatient settings. Pediatrics. 2010;125:e1278–e1285. doi: 10.1542/peds.2009-3270.
    1. Lee G.O., Richard S.A., Kang G., Houpt E.R., Seidman J.C., Pendergast L.L., Bhutta Z.A., Ahmed T., Mduma E.R., Lima A.A., et al. A Comparison of Diarrheal Severity Scores in the MAL-ED Multisite Community-Based Cohort Study. J. Pediatr. Gastroenterol. Nutr. 2016;63:466–473. doi: 10.1097/MPG.0000000000001286.
    1. Omore R., Tate J.E., O’Reilly C.E., Ayers T., Williamson J., Moke F., Schilling K.A., Awuor A.O., Jaron P., Ochieng J.B., et al. Epidemiology, Seasonality and Factors Associated with Rotavirus Infection among Children with Moderate-to-Severe Diarrhea in Rural Western Kenya, 2008–2012: The Global Enteric Multicenter Study (GEMS) PLoS ONE. 2016;11:e0160060. doi: 10.1371/journal.pone.0160060.
    1. MacLennan C.A., Riddle M.S., Chen W.H., Talaat K.R., Jain V., Bourgeois A.L., Frenck R., Kotloff K., Porter C.K. Consensus Report on Shigella Controlled Human Infection Model: Clinical Endpoints. Clin. Infect. Dis. 2019;69:S591–S595. doi: 10.1093/cid/ciz891.
    1. World Health Organization . Chart Booklet: Integrated Management of Childhood Illness. WHO; Geneva, Switzerland: 2014.
    1. Levine M.M., Kotloff K.L., Nataro J.P., Muhsen K. The Global Enteric Multicenter Study (GEMS): Impetus, rationale, and genesis. Clin. Infect. Dis. 2012;55((Suppl. S4)):S215–S224. doi: 10.1093/cid/cis761.
    1. Farag T.H., Nasrin D., Wu Y., Muhsen K., Blackwelder W.C., Sommerfelt H., Panchalingam S., Nataro J.P., Kotloff K.L., Levine M.M. Some epidemiologic, clinical, microbiologic, and organizational assumptions that influenced the design and performance of the Global Enteric Multicenter Study (GEMS) Clin. Infect. Dis. 2012;55((Suppl. S4)):S225–S231. doi: 10.1093/cid/cis787.
    1. Zaman K., Dang D.A., Victor J.C., Shin S., Yunus M., Dallas M.J., Podder G., Vu D.T., Le T.P., Luby S.P., et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: A randomised, double-blind, placebo-controlled trial. Lancet. 2010;376:615–623. doi: 10.1016/S0140-6736(10)60755-6.
    1. Bhandari N., Rongsen-Chandola T., Bavdekar A., John J., Antony K., Taneja S., Goyal N., Kawade A., Kang G., Rathore S.S., et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: A randomised, double-blind, placebo-controlled trial. Lancet. 2014;383:2136–2143. doi: 10.1016/S0140-6736(13)62630-6.
    1. Phase 1-2, Randomized, Multi-Center, Double-Blind, Placebo-Controlled, Safety, Immunogenicity, and Efficacy Study in Healthy Adults of Intramuscular Norovirus Bivalent Virus-like Particle Vaccine in Experimental Human Norovirus GII.4 Disease. [(accessed on 2 September 2021)]; Available online: .
    1. Freedman S.B., Xie J., Nettel-Aguirre A., Pang X.L., Chui L., Williamson-Urquhart S., Schnadower D., Schuh S., Sherman P.M., Lee B.E., et al. A randomized trial evaluating virus-specific effects of a combination probiotic in children with acute gastroenteritis. Nat. Commun. 2020;11:2533. doi: 10.1038/s41467-020-16308-3.
    1. Schnadower D., Tarr P.I., Casper T.C., Gorelick M.H., Dean J.M., O’Connell K.J., Mahajan P., Levine A.C., Bhatt S.R., Roskind C.G., et al. Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N. Engl. J. Med. 2018;379:2002–2014. doi: 10.1056/NEJMoa1802598.
    1. PATH Vesikari Clinical Severity Scoring System Manual. 2011. [(accessed on 25 December 2021)]. Available online:
    1. Fang F.C., Patel R. 2017 Infectious Diseases Society of America Infectious Diarrhea Guidelines: A View From the Clinical Laboratory. Clin. Infect. Dis. 2017;65:1974–1976. doi: 10.1093/cid/cix730.
    1. Shane A.L., Mody R.K., Crump J.A., Tarr P.I., Steiner T.S., Kotloff K., Langley J.M., Wanke C., Warren C.A., Cheng A.C., et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017;65:1963–1973. doi: 10.1093/cid/cix959.
    1. Prakash V.P., LeBlanc L., Alexander-Scott N.E., Skidmore J., Simmons D., Quilliam D., Chapin K.C. Use of a culture-independent gastrointestinal multiplex PCR panel during a Shigellosis outbreak: Considerations for clinical laboratories and public health. J. Clin. Microbiol. 2015;53:1048–1049. doi: 10.1128/JCM.03374-14.
    1. Liu J., Pholwat S., Zhang J., Taniuchi M., Haque R., Alam M., Ochieng J.B., Jones J.A., Platts-Mills J.A., Tennant S.M., et al. Evaluation of Molecular Serotyping Assays for Shigella flexneri Directly on Stool Samples. J. Clin. Microbiol. 2021;59:e02455-20. doi: 10.1128/JCM.02455-20.
    1. Rts S.C.T.P. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: A phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014;11:e1001685. doi: 10.1371/journal.pmed.1001685.
    1. Rogawski McQuade E.T., Shaheen F., Kabir F., Rizvi A., Platts-Mills J.A., Aziz F., Kalam A., Qureshi S., Elwood S., Liu J., et al. Epidemiology of Shigella infections and diarrhea in the first two years of life using culture-independent diagnostics in 8 low-resource settings. PLoS Negl. Trop. Dis. 2020;14:e0008536. doi: 10.1371/journal.pntd.0008536.
    1. Kotloff K.L., Nasrin D., Blackwelder W.C., Wu Y., Farag T., Panchalingham S., Sow S.O., Sur D., Zaidi A.K.M., Faruque A.S.G., et al. The incidence, aetiology, and adverse clinical consequences of less severe diarrhoeal episodes among infants and children residing in low-income and middle-income countries: A 12-month case-control study as a follow-on to the Global Enteric Multicenter Study (GEMS) Lancet Glob. Health. 2019;7:e568–e584. doi: 10.1016/S2214-109X(19)30076-2.
    1. Rogawski E.T., Platts-Mills J.A., Seidman J.C., John S., Mahfuz M., Ulak M., Shrestha S.K., Soofi S.B., Yori P.P., Mduma E., et al. Use of antibiotics in children younger than two years in eight countries: A prospective cohort study. Bull. World Health Organ. 2016;95:49–61. doi: 10.2471/BLT.16.176123.
    1. World Health Organization . Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Illnesses with Limited Resources. WHO; Geneva, Switzerland: 2005.
    1. Nasrin D., Wu Y., Blackwelder W.C., Farag T.H., Saha D., Sow S.O., Alonso P.L., Breiman R.F., Sur D., Faruque A.S.G., et al. Health care seeking for childhood diarrhea in developing countries: Evidence from seven sites in Africa and Asia. Am. J. Trop. Med. Hyg. 2013;89:3–12. doi: 10.4269/ajtmh.12-0749.

Source: PubMed

3
Předplatit