Clinical experience with an in-NICU magnetic resonance imaging system

Kirsten R Thiim, Elizabeth Singh, Srinivasan Mukundan, P Ellen Grant, Edward Yang, Mohamed El-Dib, Terrie E Inder, Kirsten R Thiim, Elizabeth Singh, Srinivasan Mukundan, P Ellen Grant, Edward Yang, Mohamed El-Dib, Terrie E Inder

Abstract

Objective: To evaluate the utility of the 1 Tesla (1 T) Embrace (Aspect Imaging) neonatal magnetic resonance imaging (MRI) scanner in a level III NICU.

Study design: Embrace brain MRI findings for 207 infants were reviewed, including 32 scans directly compared within 5 days with imaging on a 3 T Siemens Trio. Clinical MRI scan abnormalities were also compared to cranial ultrasound findings.

Result: Of the 207 Embrace brain MRIs, 146 (70.5%) were obtained for clinical indications and 61 (29.5%) were research cases. Abnormal findings were found in 80 scans, most commonly hemorrhage and white matter injury. Notable findings included a stroke, medullary brainstem tumor, and polymicrogyria. In the 1 T versus 3 T comparison cohort, results were discordant in only one infant with punctate foci of susceptibility noted only on the 3 T scan.

Conclusion: The Embrace MRI scans detected clinically relevant brain abnormalities and in a subset were clinically comparable to 3 T scans.

Conflict of interest statement

TEI and PEG are members of the Scientific Advisory Board for Aspect Imaging.

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Figures

Fig. 1. Image comparison of MRI findings…
Fig. 1. Image comparison of MRI findings on the 1 Tesla Embrace (left) and 3 Tesla scanners (right).
a Siemens Trio: sagittal T2 weighted imaging shows perisylvian polymicrogyria (arrows). b Siemens Prisma: axial diffusion weighted imaging shows left occipital PCA infarct (arrow). PCA: posterior cerebral artery. c Siemens Verio: sagittal T2 weighted images show left medullary brainstem tumor (arrow).
Fig. 2. Compassionate care cases.
Fig. 2. Compassionate care cases.
a Very preterm infant. Axial T1 weighted image (left) and T2 weighted image (right) show ventriculomegaly and intraventricular hemorrhage. b Extremely preterm infant with respiratory failure and gram-negative E. Coli sepsis. Axial T2 weighted image left shows intraventricular hemorrhage with regions of medullary vein thromboses (left). Axial DWI (middle) and ADC map (right) show severe diffuse white matter and thalamic decreased diffusion consistent with severe diffuse injury. c Term infant scanned on day 4 of life. Axial T2 weighted image (left), axial Diffusion Weighted Image (middle), and axial ADC map (right) in a neonate with hypoxic ischemic encephalopathy shows severe diffuse injury on DWI.

References

    1. Dudink J, Kerr JL, Paterson K, Counsell SJ. Connecting the developing preterm brain. Early Hum Dev. 2008;84:777–782. doi: 10.1016/j.earlhumdev.2008.09.004.
    1. Ment LR, Hirtz D, Hüppi PS. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 2009;8:1042–1055. doi: 10.1016/S1474-4422(09)70257-1.
    1. Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R, et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008;131:2028–2041. doi: 10.1093/brain/awn137.
    1. Panigrahy A, Borzage M, Blüml S. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain. Semin Perinatol. 2010;34:3–19. doi: 10.1053/j.semperi.2009.10.001.
    1. Lane A, Chuk LM, Colditz PB, Coulthard A. The MRI-compatible neonatal incubator in practice. J Paediatr Child Health. 2013;49:E377–E380. doi: 10.1111/jpc.12222.
    1. Rona Z, Klebermass K, Cardona F, Czaba CD, Brugger PC, Weninger M, et al. Comparison of neonatal MRI examinations with and without an MR-compatible incubator: advantages in examination feasibility and clinical decision-making. Eur J Paediatr Neurol. 2010;14:410–417. doi: 10.1016/j.ejpn.2010.03.005.
    1. Dumoulin CL, Rohling KW, Piel JE, Rossi CJ, Giaquinto RO, Watkins RD, et al. Magnetic resonance imaging compatible neonate incubator. Concepts Magn Reson Part A Bridg. Educ Res. 2002;15:117–128.
    1. Bekiesińska-Figatowska M, Szkudlińska-Pawlak S, Romaniuk-Doroszewska A, Duczkowski M, Iwanowska B, Duczkowska A, et al. First experience with neonatal examinations with the use of MR-compatible incubator. Pol J Radio. 2014;79:268–274. doi: 10.12659/PJR.890225.
    1. Mathur AM, Neil JJ, McKinstry RC, Inder TE. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radio. 2008;38:260–264. doi: 10.1007/s00247-007-0705-9.
    1. Tkach JA, Hillman NH, Jobe AH, Loew W, Pratt RG, Daniels BR, et al. An MRI system for imaging neonates in the NICU: initial feasibility study. Pediatr Radio. 2012;42:1347–1356. doi: 10.1007/s00247-012-2444-9.
    1. Tkach JA, Merhar SL, Kline-Fath BM, Pratt RG, Loew WM, Daniels BR, et al. MRI in the neonatal ICU: initial experience using a small-footprint 1.5-T system. AJR Am J Roentgenol. 2014;202:W95–W105. doi: 10.2214/AJR.13.10613.
    1. Sorokan ST, Jefferies AL, Miller SP. Imaging the term neonatal brain. Paediatr Child Health. 2018;23:322–328. doi: 10.1093/pch/pxx161.
    1. Twomey E, Twomey A, Ryan S, Murphy J, Donoghue VB. MR imaging of term infants with hypoxic-ischaemic encephalopathy as a predictor of neurodevelopmental outcome and late MRI appearances. Pediatr Radio. 2010;40:1526–1535. doi: 10.1007/s00247-010-1692-9.
    1. Chang PD, Chow DS, Alber A, Lin YK, Youn YA. Predictive values of location and volumetric MRI injury patterns for neurodevelopmental outcomes in hypoxic-ischemic encephalopathy neonates. Brain Sci. 2020;10:991. doi: 10.3390/brainsci10120991.
    1. Cheong JL, Coleman L, Hunt RW, Lee KJ, Doyle LW, Inder TE, et al. Prognostic utility of magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: substudy of a randomized trial. Arch Pediatr Adolesc Med. 2012;166:634–640. doi: 10.1001/archpediatrics.2012.284.
    1. Hand IL, Shellhaas RA, Milla SS. Committee on fetus and newborn, section on neurology, section on radiology. routine neuroimaging of the preterm brain. Pediatrics. 2020;146:e2020029082. doi: 10.1542/peds.2020-029082.
    1. Inder TE, de Vries LS, Ferriero DM, Grant PE, Ment LR, Miller SP, et al. Neuroimaging of the preterm brain: review and recommendations. J Pediatr. 2021;237:276–87.e4. doi: 10.1016/j.jpeds.2021.06.014.
    1. Back SA, Miller SP. Brain injury in premature neonates: A primary cerebral dysmaturation disorder? Ann Neurol. 2014;75:469–486. doi: 10.1002/ana.24132.
    1. Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr. 2004;145:593–99. doi: 10.1016/j.jpeds.2004.05.042.
    1. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr. 2003;143:171–79. doi: 10.1067/S0022-3476(03)00357-3.
    1. Agut T, Alarcon A, Cabañas F, Bartocci M, Martinez-Biarge M, Horsch S, et al. Preterm white matter injury: ultrasound diagnosis and classification. Pediatr Res. 2020;87:37–49. doi: 10.1038/s41390-020-0781-1.
    1. Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics. 2001;107:719–727. doi: 10.1542/peds.107.4.719.
    1. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, et al. Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr. 2005;147:609–616. doi: 10.1016/j.jpeds.2005.06.033.
    1. Steggerda SJ, Leijser LM. Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 2009;252:190–9. doi: 10.1148/radiol.2521081525.
    1. Tam EW, Rosenbluth G, Rogers EE, Ferriero DM, Glidden D, Goldstein RB, et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr. 2011;158:245–50. doi: 10.1016/j.jpeds.2010.07.049.
    1. Benders MJ, Kersbergen KJ, de Vries LS. Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol. 2014;41:69–82. doi: 10.1016/j.clp.2013.09.005.
    1. Plaisier A, Raets MM, Ecury-Goossen GM, Govaert P, Feijen-Roon M, Reiss IK, et al. Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed. 2015;100:F293–300. doi: 10.1136/archdischild-2014-306129.
    1. Ramenghi LA, Rutherford M, Fumagalli M, Bassi L, Messner H, Counsell S, et al. Neonatal neuroimaging: going beyond the pictures. Early Hum Dev. 2009;85:S75–S77. doi: 10.1016/j.earlhumdev.2009.08.022.
    1. Rutherford MA, Supramaniam V, Ederies A, Chew A, Bassi L, Groppo M, et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology. 2010;52:505–521. doi: 10.1007/s00234-010-0700-y.
    1. Counsell SJ, Rutherford MA, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed. 2003;88:F269–F274. doi: 10.1136/fn.88.4.F269.
    1. Anderson PJ, Cheong JL, Thompson DK. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol. 2015;39:147–158. doi: 10.1053/j.semperi.2015.01.008.
    1. Plaisier A, Govaert P, Lequin MH, Dudink J. Optimal timing of cerebral MRI in preterm infants to predict long-term neurodevelopmental outcome: a systematic review. Am J Neuroradiol. 2014;35:841–47. doi: 10.3174/ajnr.A3513.
    1. Mathur A, Inder T. Magnetic resonance imaging-insights into brain injury and outcomes in premature infants. J Commun Disord. 2009;42:248–255. doi: 10.1016/j.jcomdis.2009.03.007.
    1. Khalaf A, Iv M, Fullerton H, Wintermark M. Pediatric stroke imaging. Pediatr Neurol. 2018;86:5–18. doi: 10.1016/j.pediatrneurol.2018.05.008.
    1. Donahue MJ, Dlamini N, Bhatia A, Jordan LC. Neuroimaging advances in pediatric stroke. Stroke. 2019;50:240–48. doi: 10.1161/STROKEAHA.118.020478.
    1. Nadel J, McNally JS, DiGiorgio A, Grandhi R. Emerging utility of applied magnetic resonance imaging in the management of traumatic brain injury. Med Sci. 2021;9:10.
    1. Wintermark M, Sanelli PC, Albers GW, Bello JA, Derdeyn CP, Hetts SW, et al. Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. J Am Coll Radio. 2013;10:828–832. doi: 10.1016/j.jacr.2013.06.019.

Source: PubMed

3
Předplatit