Impaired Lymphatic Drainage and Interstitial Inflammatory Stasis in Chronic Musculoskeletal and Idiopathic Pain Syndromes: Exploring a Novel Mechanism

Brian Tuckey, John Srbely, Grant Rigney, Meena Vythilingam, Jay Shah, Brian Tuckey, John Srbely, Grant Rigney, Meena Vythilingam, Jay Shah

Abstract

A normal functioning lymphatic pump mechanism and unimpaired venous drainage are required for the body to remove inflammatory mediators from the extracellular compartment. Impaired vascular perfusion and/or lymphatic drainage may result in the accumulation of inflammatory substances in the interstitium, creating continuous nociceptor activation and related pathophysiological states including central sensitization and neuroinflammation. We hypothesize that following trauma and/or immune responses, inflammatory mediators may become entrapped in the recently discovered interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin 1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular perfusion via sympathetic activation and, following transforming growth factor beta 1 expression, may lead to additional stasis through direct fascial compression of pre-lymphatic pathways. These mechanisms, when combined with other known pathophysiological processes, enable us to describe a persistent feed-forward loop capable of creating and maintaining chronic pain syndromes. The potential for concomitant visceral and/or vascular dysfunction, initiated and maintained by the same feed-forward inflammatory mechanism, is also described.

Keywords: counterstrain techniques; cytokines; fascia; idiopathic diseases; interstitial inflammatory stasis; lymphatic dysfunction; myofascial pain and dysfunction.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Tuckey, Srbely, Rigney, Vythilingam and Shah.

Figures

Figure 1
Figure 1
Trauma and/ or immune responses lead to PC production, most notably IL-1β, IL-6 and TNF-α. PANs of multiple tissues embedded in the ECM are stimulated, transporting these substances to the DRG and DH where glial cells are stimulated leading to central and peripheral neuroinflammation/sensitization. Nociceptive bombardment stimulates somato/visceral-sympathetic reflexes causing the release of NE, resulting in peripheral vasoconstriction (including fascial vasculature) while the cytokines IL-1β, IL-6, TNF-α which deactivate the local lymphatic pump mechanism and simultaneously stimulate fibroblasts to differentiate into myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, causes contraction of fascial tissues compressing pre-lymphatic pathways. Impaired hemodynamics from vasoconstriction, deactivation of the lymphatic pump mechanism and compression of pre-lymphatic pathways create areas of hypoxia and IIS. Continued PAN stimulation results in a pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and sympathetic activation which manifests in chronic pain, sub-threshold action potentials and idiopathic visceral/vascular dysfunction.
Figure 2
Figure 2
Nociceptive bombardment (various sources) produces PCs including IL-1β, IL-6, TNF-α etc. PANs of multiple tissues embedded in the ECM are stimulated, transporting these substances to the DRG, causing antidromic release of neuropeptides from the DRG into the injured and neurosegmentally linked tissues, exacerbating the response beyond the region of primary hyperalgesia. Glial cells in the DH are stimulated leading to central and peripheral neuroinflammation/sensitization. PAN entry into the DH at multiple levels alters the activity of alpha and gamma motor neurons, creating multi-segmental muscle guarding reflexes, and myofascial compression of pre-lymphatic pathways. Simultaneously, somato/visceral-sympathetic reflexes are stimulated, causing the release of NE, resulting in peripheral vasoconstriction (including fascial vasculature) while cytokines IL-1β, IL-6, TNF-α deactivate local lymphatic propulsion and stimulate fibroblasts to differentiate into myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, creates local fascial contraction, perimysial stiffness (gamma motor activation) and compression of pre-lymphatic pathways. Due to the combined mechanisms, areas of hypoxia and inflammatory stasis develop which continuously stimulate local PANs. A pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and SNA manifests in chronic pain, sub-threshold action potentials and idiopathic visceral/vascular dysfunction.

References

    1. Gerdle B, Björk J, Henriksson C, Bengtsson A. Prevalence of current and chronic pain and their influences upon work and healthcare-seeking: a population study. J Rheumatol. (2004) 31:1399–406.
    1. Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH. The prevalence of chronic pain in United States adults: results of an internet-based survey. J Pain. (2010) 11:1230–9. 10.1016/j.jpain.2010.07.002
    1. Hylden JLK, Nahin RL, Traub RJ, Dubner R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain. (1989) 37:229–43. 10.1016/0304-3959(89)90135-8
    1. Hoheisel U, Mense S, Simons DG, Yu X-M. Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain? Neuroscience Letters. (1993) 153:9–12. 10.1016/0304-3940(93)90064-R
    1. Gerwin RD. A review of myofascial pain and fibromyalgia–factors that promote their persistence. Acupunct Med. (2005) 23:121–34. 10.1136/aim.23.3.121
    1. Lin Q, Li D, Xu X, Zou X, Fang L. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin. Mol Pain. (2007) 3:30. 10.1186/1744-8069-3-30
    1. Passatore M, Roatta S. Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model. Eur J Appl Physiol. (2006) 98:423–49. 10.1007/s00421-006-0312-8
    1. Gimse R, Björgen IA, Tjell C, Tyssedal JS lve, Bø K. Reduced cognitive functions in a group of whiplash patients with demonstrated disturbances in the posture control system. J Clin Exp Neuropsychol. (1997) 19:838–49. 10.1080/01688639708403764
    1. Ferrari R, Russell AS, Carroll LJ, Cassidy JD. A re-examination of the whiplash associated disorders (WAD) as a systemic illness. Ann Rheumatic Dis. (2005) 64:1337–42. 10.1136/ard.2004.034447
    1. Lovell ME, Galasko CSB. Whiplash disorders—a review. Injury. (2002) 33:97–101. 10.1016/S0020-1383(01)00111-5
    1. Uçeyler N, Häuser W, Sommer C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet Disord. (2011) 12:245. 10.1186/1471-2474-12-245
    1. Shah JP, Danoff JV, Desai MJ, Parikh S, Nakamura LY, Phillips TM, et al. . Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil. (2008) 89:16–23. 10.1016/j.apmr.2007.10.018
    1. Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, et al. . The role of psychological and biological factors in postinfective gut dysfunction. Gut. (1999) 44:400–6. 10.1136/gut.44.3.400
    1. Larsson R, Oberg PA, Larsson SE. Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia. Pain. (1999) 79:45–50. 10.1016/S0304-3959(98)00144-4
    1. Chen J-T, Chen S-M, Kuan T-S, Chung K-C, Hong C-Z. Phentolamine effect on the spontaneous electrical activity of active loci in a myofascial trigger spot of rabbit skeletal muscle. Arch Phys Med Rehabil. (1998) 79:790–4. 10.1016/S0003-9993(98)90357-4
    1. Hubbard DR, Berkoff GM. Myofascial trigger points show spontaneous needle EMG activity. Spine. (1993) 18:1803–7. 10.1097/00007632-199310000-00015
    1. Mayer EA. Emerging disease model for functional gastrointestinal disorders. Am J Med. (1999) 107:12–9. 10.1016/S0002-9343(99)00277-6
    1. Fisher JP, Young CN, Fadel PJ. Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci. (2009) 148:5–15. 10.1016/j.autneu.2009.02.003
    1. Fernandez-de-Las-Penas C, Cuadrado ML, Arendt-Nielsen L, Simons DG, Pareja JA. Myofascial trigger points and sensitization: an updated pain model for tension-type headache. Cephalalgia. (2007) 27:383–93. 10.1111/j.1468-2982.2007.01295.x
    1. Sikdar S, Ortiz R, Gebreab T, Gerber LH, Shah JP. Understanding the vascular environment of myofascial trigger points using ultrasonic imaging and computational modeling. Annu Int Conf IEEE Eng Med Biol Soc. (2010) 2010:5302–5. 10.1109/IEMBS.2010.5626326
    1. Schwager S, Detmar M. Inflammation and lymphatic function. Front Immunol. (2019) 10:308. 10.3389/fimmu.2019.00308
    1. Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. (2013) 64:362–9. 10.1016/j.cyto.2013.05.015
    1. Häbler H-J, Wasner G, Jänig W. Interaction of sympathetic vasoconstriction and antidromic vasodilatation in the control of skin blood flow. Exp Brain Res. (1997) 113:402–10. 10.1007/PL00005594
    1. Bengtsson A, Bengtsson M. Regional sympathetic blockade in primary fibromyalgia. Pain. (1988) 33:161–7. 10.1016/0304-3959(88)90086-3
    1. Willard F. Integrative Pain Medicine: The Science and Practice of Complementary and Alternative Medicine in Pain Management. In: Audette JF, Bailey A, editors. Humana Press; (2008).
    1. Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. (2005) 6:507–20. 10.1038/nrn1701
    1. Prechtl JC, Powley TL. B-afferents: a fundamental division of the nervous system mediating homeostasis? Behav Brain Sci. (1990) 13:289–300. 10.1017/S0140525X00078729
    1. Munger BL, Ide C. The structure and function of cutaneous sensory receptors. Arch Histol Cytol. (1988) 51:1–34. 10.1679/aohc.51.1
    1. Mense S, Simons DG, Russell IJ. Muscle Pain: Understanding Its Nature, Diagnosis, and Treatment. Lippincott Williams & Wilkins; (2001).
    1. Premkumar LS, Raisinghani M. Nociceptors in cardiovascular functions: complex interplay as a result of cyclooxygenase inhibition. Mol Pain. (2006) 2:1744–8069. 10.1186/1744-8069-2-26
    1. Vital A, Carles D, Serise J-M, Boisseau MR. Evidence for unmyelinated C fibres and inflammatory cells in human varicose saphenous vein. Int J Angiol. (2010) 19:e73–7. 10.1055/s-0031-1278374
    1. Teixeira MJ, Almeida DB, Yeng LT, Teixeira MJ, Almeida DB, Yeng LT. Concept of acute neuropathic pain. The role of nervi nervorum in the distinction between acute nociceptive and neuropathic pain. Revista Dor. (2016) 17:5–10. 10.5935/1806-0013.20160038
    1. Fortier LA, Nixon AJ. Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J Rheumatol. (1997) 24:524.
    1. Cervero F, Jänig W. Visceral nociceptors: a new world order? Trends Neurosci. (1992) 15:374–8. 10.1016/0166-2236(92)90182-8
    1. Jinkins JR, Whittemore AR, Bradley WG. The anatomic basis of vertebrogenic pain and the autonomic syndrome associated with lumbar disk extrusion. AJR Am J Roentgenol. (1989) 152:1277–89. 10.2214/ajr.152.6.1277
    1. del Rio Sanchez M, Reuter U, Moskowitz MA. Central and peripheral mechanisms of migraine. Funct Neurol. (2000) 15:157–62.
    1. Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol. (1989) 62:834–40. 10.1152/jn.1989.62.4.834
    1. Jänig W. Neurobiologie viszeraler schmerzen. Schmerz. (2014) 28:233–51. 10.1007/s00482-014-1402-x
    1. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. (2010) 16:1267–76. 10.1038/nm.2234
    1. Witschi R, Punnakkal P, Paul J, Walczak J-S, Cervero F, Fritschy J-M, et al. . Presynaptic α2-GABAA receptors in primary afferent depolarization and spinal pain control. J Neurosci. (2011) 31:8134–42. 10.1523/JNEUROSCI.6328-10.2011
    1. Perkins MN, Kelly D. Interleukin-1β induced-desArg9bradykinin-mediated thermal hyperalgesia in the rat. Neuropharmacology. (1994) 33:657–60. 10.1016/0028-3908(94)90171-6
    1. Watkins LR, Wiertelak EP, Goehler LE, Smith KP, Martin D, Maier SF. Characterization of cytokine-induced hyperalgesia. Brain Res. (1994) 654:15–26. 10.1016/0006-8993(94)91566-0
    1. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. . Glial–cytokine–neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. (2007) 27:6006–18. 10.1523/JNEUROSCI.0176-07.2007
    1. Sun S, Cao H, Han M, Li T-T, Pan H-L, Zhao Z-Q, et al. . New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain. (2007) 129:64–75. 10.1016/j.pain.2006.09.035
    1. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA. (2008) 105:17151–6. 10.1073/pnas.0806682105
    1. Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. (2018) 129:343–66. 10.1097/ALN.0000000000002130
    1. Li H, Han D. A biotic interfacial fluid transport phenomenon in the meshwork of fibrous connective tissues over the whole body. Prog Physiol Sci. (2017) 48:81–87.
    1. Xie W-R, Deng H, Li H, Bowen TL, Strong JA, Zhang J-M. Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience. (2006) 142:809–22. 10.1016/j.neuroscience.2006.06.045
    1. Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol. (2003) 521:1–21.
    1. Dubner R, Bennett GJ. Spinal and trigeminal mechanisms of nociception. Annu Rev Neurosci. (1983) 6:381–418. 10.1146/annurev.ne.06.030183.002121
    1. Grigg P, Schaible H-G, Schmidt RF. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol. (1986) 55:635–43. 10.1152/jn.1986.55.4.635
    1. He X, Proske U, Schaible HG, Schmidt RF. Acute inflammation of the knee joint in the cat alters responses of flexor motoneurons to leg movements. J Neurophysiol. (1988) 59:326–40. 10.1152/jn.1988.59.2.326
    1. Eble JN. Patterns of response of the paravertebral musculature to visceral stimuli. Am J Physiol. (1960) 198:429–33. 10.1152/ajplegacy.1960.198.2.429
    1. Djupsjöbacka M, Johansson H, Bergenheim M, Wenngren BI. Influences on the gamma-muscle spindle system from muscle afferents stimulated by increased intramuscular concentrations of bradykinin and 5-HT. Neurosci Res. (1995) 22:325–33. 10.1016/0168-0102(95)00906-A
    1. Partanen JV, Ojala TA, Arokoski JP. Myofascial syndrome and pain: a neurophysiological approach. Pathophysiology. (2010) 17:19–28. 10.1016/j.pathophys.2009.05.001
    1. Simons DG. Review of enigmatic MTrPs as a common cause of enigmatic musculoskeletal pain and dysfunction. J Electromyogr Kinesiol. (2004) 14:95–107. 10.1016/j.jelekin.2003.09.018
    1. Ge H-Y, Arendt-Nielsen L. Latent myofascial trigger points. Curr Pain Headache Rep. (2011) 15:386–92. 10.1007/s11916-011-0210-6
    1. Borg-Stein J, Stein J. Trigger points and tender points: one and the same? Does injection treatment help? Rheum Dis Clin North Am. (1996) 22:305–22. 10.1016/S0889-857X(05)70274-X
    1. Ge H-Y, Wang Y, Danneskiold-Samsøe B, Graven-Nielsen T, Arendt-Nielsen L. The predetermined sites of examination for tender points in fibromyalgia syndrome are frequently associated with myofascial trigger points. J Pain. (2010) 11:644–51. 10.1016/j.jpain.2009.10.006
    1. Gerwin RD. Fibromyalgia tender points at examination sites specified by the American college of rheumatology criteria are almost universally myofascial trigger points. Curr Pain Headache Rep. (2011) 15:1–3. 10.1007/s11916-010-0154-2
    1. Gerwin RD, Dommerholt J, Shah JP. An expansion of Simons' integrated hypothesis of trigger point formation. Curr Pain Head Rep. (2004) 8:468–75. 10.1007/s11916-004-0069-x
    1. Srbely JZ. New trends in the treatment and management of myofascial pain syndrome. Curr Pain Headache Rep. (2010) 14:346–52. 10.1007/s11916-010-0128-4
    1. Srbely JZ, Dickey JP, Lee D, Lowerison M. Dry needle stimulation of myofascial trigger points evokes segmental anti-nociceptive effects. J Rehabil Med. (2010) 42:463–8. 10.2340/16501977-0535
    1. Jarrell J. Myofascial dysfunction in the pelvis. Curr Pain Headache Rep. (2004) 8:452–6. 10.1007/s11916-004-0066-0
    1. Chen S-M, Chen J-T, Kuan T-S, Hong C-Z. Myofascial trigger points in intercostal muscles secondary to herpes zoster infection of the intercostal nerve. Arch Phys Med Rehabil. (1998) 79:336–8. 10.1016/S0003-9993(98)90016-8
    1. Hong CZ. Pathophysiology of myofascial trigger point. J Formos Med Assoc. (1996) 95:93–104.
    1. Shah JP, Phillips TM, Danoff JV, Gerber LH. An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol. (2005) 99:1977–84. 10.1152/japplphysiol.00419.2005
    1. Jänig W. Relationship between pain and autonomic phenomena in headache and other pain conditions. Cephalalgia. (2003) 23(Suppl. 1):43–8. 10.1046/j.1468-2982.2003.00573.x
    1. Tozzi P. A unifying neuro-fasciagenic model of somatic dysfunction - underlying mechanisms and treatment - Part I. J Bodyw Mov Ther. (2015) 19:310–26. 10.1016/j.jbmt.2015.01.001
    1. Schmidt RF, Weller E. Reflex activity in the cervical and lumbar sympathetic trunk by unmyelinated somatic afferents. Brain Res. (1970) 24:207–18. 10.1016/0006-8993(70)90101-0
    1. Sato A, Schmidt RF. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev. (1973) 53:916–47. 10.1152/physrev.1973.53.4.916
    1. Sato A. The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol. (1997) 130:1–328.
    1. Joyner MJ, Halliwill JR. Neurogenic vasodilation in human skeletal muscle: possible role in contraction-induced hyperaemia. Acta Physiol Scand. (2000) 168:481–8. 10.1046/j.1365-201x.2000.00700.x
    1. Jeschonneck M, Grohmann G, Hein G, Sprott H. Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia. Rheumatology. (2000) 39:917–21. 10.1093/rheumatology/39.8.917
    1. Morf S, Amann-Vesti B, Forster A, Franzeck UK, Koppensteiner R, Uebelhart D, et al. . Microcirculation abnormalities in patients with fibromyalgia–measured by capillary microscopy and laser fluxmetry. Arthritis Res Ther. (2004) 7:1–8. 10.1186/ar1459
    1. Fassbender HG, Wegner K. Morphology and pathogenesis of soft-tissue rheumatism. Zeitschrift fur Rheumaforschung. (1973) 32:355.
    1. Sikdar S, Shah JP, Gebreab T, Yen R-H, Gilliams E, Danoff J, et al. . Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue. Arch Phys Med Rehabil. (2009) 90:1829–38. 10.1016/j.apmr.2009.04.015
    1. Yehuda R, Siever LJ, Teicher MH, Levengood RA, Gerber DK, Schmeidler J, et al. . Plasma norepinephrine and 3-methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder. Biol Psychiatry. (1998) 44:56–63. 10.1016/S0006-3223(98)80007-3
    1. Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, et al. . Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation. (2001) 9:209–17. 10.1159/000049028
    1. Geracioti TD, Jr, Carpenter LL, Owens MJ, Baker DG, Ekhator NN, Horn PS, et al. . Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am J Psychiatry. (2006) 163:637–43. 10.1176/ajp.2006.163.4.637
    1. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. (2003) 43:2–15. 10.1016/S0018-506X(02)00024-7
    1. Heppner PS, Crawford EF, Haji UA, Afari N, Hauger RL, Dashevsky BA, et al. . The association of posttraumatic stress disorder and metabolic syndrome: a study of increased health risk in veterans. BMC Med. (2009) 7:1. 10.1186/1741-7015-7-1
    1. Gill J, Vythilingam M, Page GG. Low cortisol, high DHEA, and high levels of stimulated TNF-α, and IL-6 in women with PTSD. J Trauma Stress. (2008) 21:530–9. 10.1002/jts.20372
    1. Gill J, Luckenbaugh D, Charney D, Vythilingam M. Sustained elevation of serum interleukin-6 and relative insensitivity to hydrocortisone differentiates posttraumatic stress disorder with and without depression. Biol Psychiatry. (2010) 68:999–1006. 10.1016/j.biopsych.2010.07.033
    1. Kibler JL. Posttraumatic stress and cardiovascular disease risk. J Trauma Dissociation. (2009) 10:135–50. 10.1080/15299730802624577
    1. Pernambuco AP, Schetino LP, Alvim CC, Murad CM, Viana RS, Carvalho LS, et al. . Increased levels of IL-17A in patients with fibromyalgia. Clin Exp Rheumatol. (2013) 31(6 Suppl 79):S60–3.
    1. Liu Z, Welin M, Bragée B, Thörnwall M, Nyberg F. Elevated Substance P level in cerebrospinal fluid from patients with fibromyalgia is contrasted by a decrease in met-enkephalin-arg-phe. Analgesia. (1995) 1(4 Suppl 5):543–547. 10.3727/107156995819563997
    1. Russell LM, Devore MD, Barnes SM, Forster JE, Hostetter TA, Montgomery AE, et al. . Challenges associated with screening for traumatic brain injury among us veterans seeking homeless services. Am J Public Health. (2013) 103(Suppl. 2):S211–3. 10.2105/AJPH.2013.301485
    1. Giovengo SL, Russell IJ, Larson AA. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J Rheumatol. (1999) 26:1564–9.
    1. Kadetoff D, Lampa J, Westman M, Andersson M, Kosek E. Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J Neuroimmunol. (2012) 242:33–8. 10.1016/j.jneuroim.2011.10.013
    1. Peres MFP, Zukerman E, Senne Soares CA, Alonso EO, Santos BFC, Faulhaber MHW. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. (2004) 24:735–9. 10.1111/j.1468-2982.2004.00750.x
    1. Romano TJ. Clinical experiences with post-traumatic fibromyalgia syndrome. W V Med J. (1990) 86:198–202.
    1. Benias PC, Wells RG, Sackey-Aboagye B, Klavan H, Reidy J, Buonocore D, et al. . Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep. (2018) 8:4947. 10.1038/s41598-018-23062-6
    1. Berman B, Maderal A, Raphael B. Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol Surg. (2017) 43:S3–18. 10.1097/DSS.0000000000000819
    1. Leak LV. The Structure of Lymphatic Capillaries in Lymph Formation. In: Federation Proceedings (1976). p. 1863–71.
    1. Leak LV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J cell Biol. (1968) 36:129–49. 10.1083/jcb.36.1.129
    1. Zawieja D. Lymphatic biology and the microcirculation: past, present and future. Microcirculation. (2005) 12:141–50. 10.1080/10739680590900003
    1. Benoit JN, Zawieja DC. Effects of f-Met-Leu-Phe-induced inflammation on intestinal lymph flow and lymphatic pump behavior. Am J Physiol Gastrointest Liver Physiol. (1992) 262:G199–202. 10.1152/ajpgi.1992.262.2.G199
    1. von der Weid P-Y, Muthuchamy M. Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology. (2010) 17:263–76. 10.1016/j.pathophys.2009.10.005
    1. von der Weid P-Y, Rehal S. Lymphatic pump function in the inflamed gut. Ann N Y Acad Sci. (2010) 1207:E69–74. 10.1111/j.1749-6632.2010.05715.x
    1. Olszewski WL, Pazdur J, Kubasiewicz E, Zaleska M, Cooke CJ, Miller NE. Lymph draining from foot joints in rheumatoid arthritis provides insight into local cytokine and chemokine production and transport to lymph nodes. Arthrit Rheumat. (2001) 44:541–9. 10.1002/1529-0131(200103)44:3<41::AID-ANR102>;2-6
    1. Tonelli F, Giudici F, Liscia G. Is lymphatic status related to regression of inflammation in Crohn's disease? World J Gastrointest Surg. (2012) 4:228. 10.4240/wjgs.v4.i10.228
    1. Kumka M, Bonar J. Fascia: a morphological description and classification system based on a literature review. J Can Chiropr Assoc. (2012) 56:179–91.
    1. Dimitrov N. Normal morphology of biologically active point BAP/ST36 rat. Acta morphologica et anthropologica. (2012) 34:30–3.
    1. Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Rep Regen. (2005) 13:7–12. 10.1111/j.1067-1927.2005.130102.x
    1. Staubesand J, Baumbach K, Li Y. La structure fine de l'aponévrose jambière (patients avec insuffisance veineuse chronique avancée et ulcère de jambe). undefined. (1997) 17:18–27.
    1. Murray MM, Spector M. Fibroblast distribution in the anteromedial bundle of the human anterior cruciate ligament: the presence of alpha-smooth muscle actin-positive cells. J Orthop Res. (1999) 17:18–27. 10.1002/jor.1100170105
    1. Ralphs SC, Whitney WO. Arthroscopic evaluation of menisci in dogs with cranial cruciate ligament injuries: 100 cases (1999–2000). J Am Vet Med Assoc. (2002) 221:1601–4. 10.2460/javma.2002.221.1601
    1. Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G. Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem. (1992) 40:1955–63. 10.1177/40.12.1333502
    1. Chander CL, Moore AR, Lewis GM, Colville-Nash PR, Desa FM, Howat DW, et al. . Myofibroblasts in cotton-induced granulation tissue and the bovine adrenal capsule: morphological aspects. Int J Tissue React. (1989) 11:161–3.
    1. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. (2002) 3:349–63. 10.1038/nrm809
    1. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. (2014) 5:123. 10.3389/fphar.2014.00123
    1. Schleip R, Gabbiani G, Wilke J, Naylor I, Hinz B, Zorn A, et al. . Fascia is able to actively contract and may thereby influence musculoskeletal dynamics: a histochemical and mechanographic investigation. Front Physiol. (2019) 10:336. 10.3389/fphys.2019.00336
    1. Krauspe R, Schmidt M, Schaible HG. Sensory innervation of the anterior cruciate ligament. An electrophysiological study of the response properties of single identified mechanoreceptors in the cat. J Bone Joint Surg Am. (1992) 74:390–7. 10.2106/00004623-199274030-00010
    1. Bruin M de, Smeulders MJ, Kreulen M, Huijing PA, Jaspers RT. Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS ONE. (2014) 9:e101038. 10.1371/journal.pone.0101038
    1. Stecco A, Stern R, Fantoni I, De Caro R, Stecco C. Fascial disorders: implications for treatment. PM R. (2016) 8:161–8. 10.1016/j.pmrj.2015.06.006
    1. Visscher DW, Myers JL. Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc. (2006) 3:322–9. 10.1513/pats.200602-019TK
    1. Ueha S, Shand FHW, Matsushima K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol. (2012) 3:71. 10.3389/fimmu.2012.00071
    1. Ogawa R. Mechanobiology of scarring. Wound Repair Regen. (2011) 19(Suppl. 1):s2–9. 10.1111/j.1524-475X.2011.00707.x
    1. Scott JR, Muangman P, Gibran NS. Making sense of hypertrophic scar: a role for nerves. Wound Repair Regen. (2007) 15(Suppl. 1):S27–31. 10.1111/j.1524-475X.2007.00222.x
    1. Bordoni B, Zanier E. Skin, fascias, and scars: symptoms and systemic connections. J Multidiscip Healthc. (2013) 7:11–24. 10.2147/JMDH.S52870
    1. Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. (1997) 121:417–24. 10.1038/sj.bjp.0701148
    1. Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve growth factor signaling and its contribution to pain. J Pain Res. (2020) 13:1223–41. 10.2147/JPR.S247472
    1. Birder L, Groat W de, Mills I, Morrison J, Thor K, Drake M. Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol Urodyn. (2010) 29:128–39. 10.1002/nau.20837
    1. Mense S. How do muscle lesions such as latent and active trigger points influence central nociceptive neurons? J Musculoskelet Pain. (2010) 18:348–53. 10.3109/10582452.2010.502621
    1. Barone V, Borghini A, Tedone Clemente E, Aglianò M, Gabriele G, Gennaro P, et al. . New insights into the pathophysiology of primary and secondary lymphedema: histopathological studies on human lymphatic collecting vessels. Lymphat Res Biol. (2020) 18:502–9. 10.1089/lrb.2020.0037
    1. Asano S, Mikami T, Matsubara S, Maegawa J, Wakui H, Tamura K, et al. . Preliminary report: the relevance of tumor necrosis factor-α in acquired primary lymphedema—a histopathological investigation. Lymphat Res Biol. (2020) 18:232–8. 10.1089/lrb.2019.0046
    1. Carthy JM. TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. J Cell Physiol. (2018) 233:98–106. 10.1002/jcp.25879
    1. Collins SM. Is the irritable gut an inflamed gut? Scand J Gastroenterol. (1992) 27(Suppl. 192):102–5. 10.3109/00365529209095988
    1. Hedge SA, Hara H, Kobayashi S. Innervation of radicular and extraparenchymal arteries of spinal cord. Histochemical and immunohistochemical study in primate. Histochemistry. (1988) 89:415–20. 10.1007/BF00492596
    1. Montalbano MJ, Loukas M, Oskouian RJ, Tubbs RS. Innervation of the blood vessels of the spinal cord: a comprehensive review. Neurosurg Rev. (2018) 41:733–5. 10.1007/s10143-016-0788-6
    1. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. New Eng J Med. (1994) 331:69–73. 10.1056/NEJM199407143310201
    1. Wood KB, Garvey TA, Gundry C, Heithoff KB. Magnetic resonance imaging of the thoracic spine. Evaluation of asymptomatic individuals. J Bone Joint Surg Am Vol. (1995) 77:1631–8. 10.2106/00004623-199511000-00001
    1. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci. (2001) 2:83–91. 10.1038/35053509
    1. Fritz K, Novotny K, Carr CL, Jr. Physiology, counterstrain/FPR. StatPearls. (2020)
    1. Meltzer KR, Standley PR. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J Am Osteopathic Assoc. (2007) 107:527–36.
    1. Melzack R, Wall PD. Pain assessment, a new theory. Science. (1965) 150:971–5. 10.1126/science.150.3699.971
    1. Bowsher D. The physiology of stimulation-produced analgesia. Acupunct Med. (1991) 9:58–62. 10.1136/aim.9.2.58
    1. Guowei L, Rongzhao L, Jingqiang X, Yuanshen W, Guorui H. Role of peripheral afferent nerve fiber in acupuncture analgesia elicited by needling point zusanli. Sci Sin. (1979) 22:680–92.
    1. Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science. (1986) 234:358–61. 10.1126/science.3764416
    1. Skelly AC, Chou R, Dettori JR, Turner JA, Friedly JL, Rundell SD, et al. . Noninvasive Nonpharmacological Treatment For Chronic Pain: A Systematic Review. Rockville, MD: Agency for Healthcare Research and Quality; (2018).
    1. Skelly AC, Chou R, Dettori JR, Turner JA, Friedly JL, Rundell SD, et al. . Noninvasive nonpharmacological treatment for chronic pain: a systematic review update. Comparative Effectiveness Review. (2020) 227. 10.23970/AHRQEPCCER227
    1. Sharma R, Wendt JA, Rasmussen JC, Adams KE, Marshall MV, Sevick-Muraca EM. New horizons for imaging lymphatic function. Ann N Y Acad Sci. (2008) 1131:13–36. 10.1196/annals.1413.002
    1. Meador BM, Krzyszton CP, Johnson RW, Huey KA. Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. J Appl Physiol 1985. (2008) 104:991–7. 10.1152/japplphysiol.01079.2007
    1. Thompson NL, Flanders KC, Smith JM, Ellingsworth LR, Roberts AB, Sporn MB. Expression of transforming growth factor-beta 1 in specific cells and tissues of adult and neonatal mice. J. Cell Biol. (1989) 108(Suppl. 2):661–9. 10.1083/jcb.108.2.661

Source: PubMed

3
Předplatit