Computational Analysis of Transcriptomic and Proteomic Data for Deciphering Molecular Heterogeneity and Drug Responsiveness in Model Human Hepatocellular Carcinoma Cell Lines

Panagiotis C Agioutantis, Heleni Loutrari, Fragiskos N Kolisis, Panagiotis C Agioutantis, Heleni Loutrari, Fragiskos N Kolisis

Abstract

Hepatocellular carcinoma (HCC) is associated with high mortality due to its inherent heterogeneity, aggressiveness, and limited therapeutic regimes. Herein, we analyzed 21 human HCC cell lines (HCC lines) to explore intertumor molecular diversity and pertinent drug sensitivity. We used an integrative computational approach based on exploratory and single-sample gene-set enrichment analysis of transcriptome and proteome data from the Cancer Cell Line Encyclopedia, followed by correlation analysis of drug-screening data from the Cancer Therapeutics Response Portal with curated gene-set enrichment scores. Acquired results classified HCC lines into two groups, a poorly and a well-differentiated group, displaying lower/higher enrichment scores in a "Specifically Upregulated in Liver" gene-set, respectively. Hierarchical clustering based on a published epithelial-mesenchymal transition gene expression signature further supported this stratification. Between-group comparisons of gene and protein expression unveiled distinctive patterns, whereas downstream functional analysis significantly associated differentially expressed genes with crucial cancer-related biological processes/pathways and revealed concrete driver-gene signatures. Finally, correlation analysis highlighted a diverse effectiveness of specific drugs against poorly compared to well-differentiated HCC lines, possibly applicable in clinical research with patients with analogous characteristics. Overall, this study expanded the knowledge on the molecular profiles, differentiation status, and drug responsiveness of HCC lines, and proposes a cost-effective computational approach to precision anti-HCC therapies.

Keywords: Gene Ontology; Reactome Pathways; bioinformatics analysis; differentiation; gene-set enrichment; hepatocellular carcinoma; proteomics; transcriptomics.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Gene-based principal component analysis (PCA) and clustering of HCC lines (A) PCA on 500 genes with the largest cross-sample variation. PC1 (x-axis) versus PC2 (y-axis) for 21 HCC lines indicated by blue color. Dashed horizontal and vertical lines mark zero values of PC1 and PC2, respectively. (B) The two optimal k-means clusters based on PC1 scores as identified by the Bayesian information criterion (BIC). All HCC lines were treated as equally weighted.
Figure 2
Figure 2
Specifically Upregulated in Liver (SU_LIVER) clustering of HCC lines and PC1-SU_LIVER correlation. (A) The two optimal k-means clusters based on computed cell line ssGSEA SU_LIVER enrichment scores as identified by the BIC. All HCC lines were treated as equally weighted. (B) PC1 score correlation (Pearson’s) with individual cell-line enrichment scores for the SU_LIVER gene-set. Cell lines included in the “high SU_LIVER score”/“high PC1 score” clusters were identified as liver-like and well-differentiated (green circles), while the ones in the “low SU_LIVER score”/“low PC1 score” clusters were characterized as poorly differentiated (purple circles). Yellow circles indicate ambiguous cell lines.
Figure 3
Figure 3
Heatmap illustrating the hierarchical clustering of cancer cell lines (columns) based on the epithelial-to-mesenchymal transition (EMT) signature of 239 genes (rows). Scaled values indicate relative downregulation (green color) or upregulation (red color) of gene expression. Cell lines are annotated by color, based on the clusters that were predicted by the SU_LIVER enrichment scores shown in Figure 2B.
Figure 4
Figure 4
PCA based on all 214 protein/phosphoprotein reverse-phase protein array (RPPA) expression data. PC1 (x-axis) versus PC2 (y-axis). Cell lines are annotated by color, based on the gene-expression-derived clusters that are predicted by the SU_LIVER enrichment scores shown in Figure 2B.
Figure 5
Figure 5
Volcano plots illustrating differentially expressed genes (DEGs) (A) and differentially expressed proteins (DEPs) (B) in poorly differentiated versus well-differentiated HCC lines. Red and green dots represent up- and downregulated genes/proteins, respectively; grey dots represent non-statistically-significant altered genes/proteins. Horizontal dashed lines indicate a statistical threshold corresponding to an adjusted p-value of < 0.1; x-axis: mRNA log2 fold-change (A) or RPPA log2 fold-change (B), y-axis: p-value in negative log10 scale.
Figure 5
Figure 5
Volcano plots illustrating differentially expressed genes (DEGs) (A) and differentially expressed proteins (DEPs) (B) in poorly differentiated versus well-differentiated HCC lines. Red and green dots represent up- and downregulated genes/proteins, respectively; grey dots represent non-statistically-significant altered genes/proteins. Horizontal dashed lines indicate a statistical threshold corresponding to an adjusted p-value of < 0.1; x-axis: mRNA log2 fold-change (A) or RPPA log2 fold-change (B), y-axis: p-value in negative log10 scale.
Figure 6
Figure 6
Pairwise Pearson correlation between identified DEPs (total proteins) and their corresponding DEGs. x-axis: mRNA log2(fold-change) of DEGs, y-axis: RPPA log2(fold-change) of DEPs. Protein–gene pairs are represented by their corresponding HGNC gene symbol.
Figure 7
Figure 7
Top 30 significantly enriched Gene Ontology (GO) biological process terms, ranked by their hypergeometric corrected p-value in negative log10 scale (x-axis). Gene enrichment is also presented in total gene numbers, right after each GO term.
Figure 8
Figure 8
Significantly enriched Reactome Pathway terms ranked by their hypergeometric corrected p-value in negative log10 scale (x-axis). Gene enrichment is also presented in total gene numbers, right after each Reactome Pathway term.
Figure 9
Figure 9
Top 35 gene-set enrichment terms as identified by camera testing, ranked by their p-value in negative log10 scale (x-axis).
Figure 10
Figure 10
Volcano plot depicting drugs characterized by a statistically significant correlation between area under concentration–response curve (AUC) response measurements and SU_LIVER enrichment scores. Green dots represent drugs that were more effective against well-differentiated cell lines compared to poorly differentiated ones, while red dots mark drugs that were relatively more effective against poorly differentiated HCC lines. Grey dots indicate drugs without a significant correlation between their effect and the differentiation status of cell lines. The horizontal dashed line marks the highest p-value corresponding to an adjusted p-value < 0.3, whereas the two vertical dashed lines mark Spearman’s ρ values equal to –0.5 and 0.5; x-axis: Spearman’s ρ, y-axis: p-value in negative log10 scale.
Figure 11
Figure 11
Heatmap illustrating the hierarchical clustering of HCC tumors (columns) based on the full set of SU_LIVER genes (rows). Scaled values indicate relative downregulation (green color) or upregulation (red color) of gene expression. HCC tumors are annotated by color according to their documented histological grade (G1+G2 versus G3+G4).

References

    1. Forner A., Reig M., Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–1314. doi: 10.1016/S0140-6736(18)30010-2.
    1. Fujiwara N., Friedman S.L., Goossens N., Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J. Hepatol. 2018;68:526–549. doi: 10.1016/j.jhep.2017.09.016.
    1. Aravalli R.N., Cressman E.N.K., Steer C.J. Cellular and molecular mechanisms of hepatocellular carcinoma: An update. Arch. Toxicol. 2013;87:227–247. doi: 10.1007/s00204-012-0931-2.
    1. Llovet J.M., Montal R., Sia D., Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018;15:599–616. doi: 10.1038/s41571-018-0073-4.
    1. Katt M.E., Placone A.L., Wong A.D., Xu Z.S., Searson P.C. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 2016;4:12. doi: 10.3389/fbioe.2016.00012.
    1. Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjørnslett M., Meza-Zepeda L.A., Eknæs M., Lind G.E., et al. Multi-omics of 34 colorectal cancer cell lines—A resource for biomedical studies. Mol. Cancer. 2017;16:1–16. doi: 10.1186/s12943-017-0691-y.
    1. Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Gregory V., Sonkin D., et al. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity. Nature. 2012;483:603–607. doi: 10.1038/nature11003.
    1. Ghandi M., Huang F.W., Jané-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R., Barretina J., Gelfand E.T., Bielski C.M., Li H., et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–508. doi: 10.1038/s41586-019-1186-3.
    1. Park J., Lee J., Kang M., Park K., Jeon Y., Lee H., Kwon H., Park H., Yeo K., Lee K., et al. Characterization of cell lines established from human hepatocellular carcinoma. Int. J. Cancer. 1995;62:276–282. doi: 10.1002/ijc.2910620308.
    1. Heffelfinger S.C., Hawkins H.H., Barrish J., Taylor L., Darlington G.J. SK HEP-1: A human cell line of endothelial origin. Cell. Dev. Biol. Anim. 1992;28:136–142. doi: 10.1007/BF02631017.
    1. Rebouissou S., Zucman-Rossi J., Moreau R., Qiu Z., Hui L. Note of caution: Contaminations of hepatocellular cell lines. J. Hepatol. 2017;67:896–897. doi: 10.1016/j.jhep.2017.08.002.
    1. Seashore-Ludlow B., Rees M.G., Cheah J.H., Coko M., Price E.V., Coletti M.E., Jones V., Bodycombe N.E., Soule C.K., Gould J., et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 2015;5:1210–1223. doi: 10.1158/-15-0235.
    1. Basu A., Bodycombe N.E., Cheah J.H., Price E.V., Liu K., Schaefer G.I., Ebright R.Y., Stewart M.L., Ito D., Wang S., et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–1161. doi: 10.1016/j.cell.2013.08.003.
    1. Ally A., Balasundaram M., Carlsen R., Chuah E., Clarke A., Dhalla N., Holt R.A., Jones S.J.M., Lee D., Ma Y., et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–1341.e23. doi: 10.1016/j.cell.2017.05.046.
    1. Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323.
    1. Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25.
    1. Rohart F., Gautier B., Singh A., Lê Cao K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:1–19. doi: 10.1371/journal.pcbi.1005752.
    1. Wang H., Song M. Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic programming. R Journal. 2011;3:29–33. doi: 10.32614/RJ-2011-015.
    1. Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464. doi: 10.1214/aos/1176344136.
    1. Hänzelmann S., Castelo R., Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform. 2013;14:7. doi: 10.1186/1471-2105-14-7.
    1. Barbie D.A., Tamayo P., Boehm J.S., Kim S.Y., Moody S.E., Dunn I.F., Schinzel A.C., Sandy P., Meylan E., Scholl C., et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–112. doi: 10.1038/nature08460.
    1. Koplev S., Lin K., Dohlman A.B., Ma’ayan A. Integration of pan-cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial-mesenchymal transition. PLoS Comput. Biol. 2018;14:1–19. doi: 10.1371/journal.pcbi.1005911.
    1. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007.
    1. Mccarthy D.J., Smyth G.K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009;25:765–771. doi: 10.1093/bioinformatics/btp053.
    1. Blighe K. Publication-ready volcano plots with enhanced colouring and labeling. [(accessed on 5 June 2020)]; Available online: . (R-Package Version 1.0.1)
    1. Koutsandreas T., Binenbaum I., Pilalis E., Valavanis I., Papadodima O., Chatziioannou A. Analyzing and visualizing genomic complexity for the derivation of the emergent molecular networks. Int. J. Monit. Surveill. Technol. Res. 2016;4:30–49. doi: 10.4018/IJMSTR.2016040103.
    1. Lhomond S., Avril T., Dejeans N., Voutetakis K., Doultsinos D., McMahon M., Pineau R., Obacz J., Papadodima O., Jouan F., et al. Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med. 2018;10:1–19. doi: 10.15252/emmm.201707929.
    1. Wu D., Smyth G.K. Camera: A competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40:1–12. doi: 10.1093/nar/gks461.
    1. Wang H., Unternaehrer J.J. Epithelial-mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev. Dyn. 2019;248:10–20. doi: 10.1002/dvdy.24678.
    1. Su A.I., Cooke M.P., Ching K.A., Hakak Y., Walker J.R., Wiltshire T., Orth A.P., Vega R.G., Sapinoso L.M., Moqrich A., et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA. 2002;99:4465–4470. doi: 10.1073/pnas.012025199.
    1. Hsiao L.L., Dangond F., Yoshida T., Hong R., Jensen R.V., Misra J., Dillon W., Lee K.F., Clark K.E., Haverty P., et al. A compendium of gene expression in normal human tissues. Physiol. Genom. 2002;2002:97–104. doi: 10.1152/physiolgenomics.00040.2001.
    1. Anastassiou D., Rumjantseva V., Cheng W., Huang J., Canoll P.D., Yamashiro D.J., Kandel J.J. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo. BMC Cancer. 2011;11:529. doi: 10.1186/1471-2407-11-529.
    1. Elvidge G.P., Glenny L., Appelhoff R.J., Ratcliffe P.J., Ragoussis J., Gleadle J.M. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1α, HIF-2α, and other pathways. J. Biol. Chem. 2006;281:15215–15226. doi: 10.1074/jbc.M511408200.
    1. Wu Y., Siadaty M.S., Berens M.E., Hampton G.M., Theodorescu D. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene. 2008;27:6679–6689. doi: 10.1038/onc.2008.264.
    1. Hoshida Y., Nijman S.M.B., Kobayashi M., Chan J.A., Brunet J.P., Chiang D.Y., Villanueva A., Newell P., Ikeda K., Hashimoto M., et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69:7385–7392. doi: 10.1158/0008-5472.CAN-09-1089.
    1. Caruso S., Calatayud A.L., Pilet J., La Bella T., Rekik S., Imbeaud S., Letouzé E., Meunier L., Bayard Q., Rohr-Udilova N., et al. Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology. 2019;157:760–776. doi: 10.1053/j.gastro.2019.05.001.
    1. Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., et al. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell. 2017;31:225–239. doi: 10.1016/j.ccell.2017.01.005.
    1. Nieto M.A., Huang R.Y.-J., Jackson R.A., Thiery J.P. EMT: 2016. Cell. 2016;166:21–45. doi: 10.1016/j.cell.2016.06.028.
    1. Dongre A., Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019;20:69–84. doi: 10.1038/s41580-018-0080-4.
    1. Martins-Filho S.N., Paiva C., Azevedo R.S., Alves V.A.F. Histological grading of hepatocellular carcinoma-a systematic review of literature. Front. Med. 2017;4:1–9. doi: 10.3389/fmed.2017.00193.
    1. Williams E.D., Gao D., Redfern A., Thompson E.W. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer. 2019 doi: 10.1038/s41568-019-0213-x.
    1. Giannelli G., Koudelkova P., Dituri F., Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J. Hepatol. 2016;65:798–808. doi: 10.1016/j.jhep.2016.05.007.
    1. Schmalhofer O., Brabletz S., Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28:151–166. doi: 10.1007/s10555-008-9179-y.
    1. Ting Tse E.Y., Fat Ko F.C., Kwan Tung E.K., Chan L.K., Wah Lee T.K., Wai Ngan E.S., Man K., Tsai Wong A.S., Ng I.O.L., Ping Yam J.W. Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J. Pathol. 2012;226:645–653. doi: 10.1002/path.3957.
    1. Li S., Wei X., He J., Tian X., Yuan S., Sun L. Plasminogen activator inhibitor-1 in cancer research. Biomed. Pharmacother. 2018;105:83–94. doi: 10.1016/j.biopha.2018.05.119.
    1. Dvorak H.F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015;3:1–11. doi: 10.1158/2326-6066.CIR-14-0209.
    1. Foster D.S., Jones R.E., Ransom R.C., Longaker M.T., Norton J.A. The evolving relationship of wound healing and tumor stroma. JCI Insight. 2018;3:1–17. doi: 10.1172/jci.insight.99911.
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Nwosu Z.C., Battello N., Rothley M., Piorońska W., Sitek B., Ebert M.P., Hofmann U., Sleeman J., Wölfl S., Meyer C., et al. Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. J. Exp. Clin. Cancer Res. 2018;37:211. doi: 10.1186/s13046-018-0872-6.
    1. Lee H.J., Jeng Y.M., Chen Y.L., Chung L., Yuan R.H. Gas6/Axl pathway promotes tumor invasion through the transcriptional activation of slug in hepatocellular carcinoma. Carcinogenesis. 2014;35:769–775. doi: 10.1093/carcin/bgt372.
    1. Antony J., Huang R.Y.J. AXL-driven EMT state as a targetable conduit in cancer. Cancer Res. 2017;77:3725–3732. doi: 10.1158/0008-5472.CAN-17-0392.
    1. Reichl P., Dengler M., van Zijl F., Huber H., Führlinger G., Reichel C., Sieghart W., Peck-Radosavljevic M., Grubinger M., Mikulits W. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology. 2015;61:930–941. doi: 10.1002/hep.27492.
    1. Ikushima H., Miyazono K. TGFΒ 2 signalling: A complex web in cancer progression. Nat. Rev. Cancer. 2010;10:415–424. doi: 10.1038/nrc2853.
    1. Kwaan H.C., Lindholm P.F. Fibrin and fibrinolysis in cancer. Semin. Thromb. Hemost. 2019;45:413–422. doi: 10.1055/s-0039-1688495.
    1. Kurz S., Thieme R., Amberg R., Groth M., Jahnke H.G., Pieroh P., Horn L.C., Kolb M., Huse K., Platzer M., et al. The anti-tumorigenic activity of A2M—A lesson from the naked mole-rat. PLoS ONE. 2017;12:1–24. doi: 10.1371/journal.pone.0189514.
    1. Akl M.R., Nagpal P., Ayoub N.M., Tai B., Prabhu S.A., Capac C.M., Gliksman M., Goy A., Suh K.S. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 2016;7:44735–44762. doi: 10.18632/oncotarget.8203.
    1. Ning B.F., Ding J., Yin C., Zhong W., Wu K., Zeng X., Yang W., Chen Y.X., Zhang J.P., Zhang X., et al. Hepatocyte nuclear factor 4α suppresses the development of hepatocellular carcinoma. Cancer Res. 2010;70:7640–7651. doi: 10.1158/0008-5472.CAN-10-0824.
    1. Wang M., Han J., Xing H., Zhang H., Li Z., Liang L., Li C., Dai S., Wu M., Shen F., et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepatic Oncol. 2016;3:241–251. doi: 10.2217/hep-2016-0012.
    1. Zhu X., Chen L., Liu L., Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front. Oncol. 2019;9:1–15. doi: 10.3389/fonc.2019.01044.
    1. Terai H., Soejima K., Yasuda H., Nakayama S., Hamamoto J., Arai D. Activation of the FGF2-FGFR1 autocrine pathway: A novel mechanism of acquired resistance to gefitinib in NSCLC. Mol. Cancer Res. 2013;1:759–768. doi: 10.1158/1541-7786.MCR-12-0652.
    1. Michailidou M., Melas I., Messinis D., Klamt S., Alexopoulos L., Kolisis F., Loutrari H. Network-based analysis of nutraceuticals in human hepatocellular carcinomas reveals mechanisms of chemopreventive action. CPT Pharmacomet. Syst. Pharmacol. 2015;4:350–361. doi: 10.1002/psp4.40.
    1. Agioutantis P.C., Kotsikoris V., Kolisis F.N., Loutrari H. RNA-seq data analysis of stimulated hepatocellular carcinoma cells treated with epigallocatechin gallate and fisetin reveals target genes and action mechanisms. Comput. Struct. Biotechnol. J. 2020;18:686–695. doi: 10.1016/j.csbj.2020.03.006.
    1. Zanetti A., Affatato R., Centritto F., Fratelli M., Kurosaki M., Barzago M.M., Bolis M., Terao M., Garattini E., Paroni G. All-trans-retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells role of notch1 and transforming growth factor (TGF β) J. Biol. Chem. 2015;290:17690–17709. doi: 10.1074/jbc.M115.638510.
    1. Liu H., Ma Y., He H.W., Zhao W.L., Shao R.G. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy. 2017;13:900–913. doi: 10.1080/15548627.2017.1291479.
    1. Hsu M.C., Hung W.C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Mol. Cancer. 2018;17:1–9. doi: 10.1186/s12943-018-0791-3.
    1. Tamada M., Nagano O., Tateyama S., Ohmura M., Yae T., Ishimoto T., Sugihara E., Onishi N., Yamamoto T., Yanagawa H., et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res. 2012;72:1438–1448. doi: 10.1158/0008-5472.CAN-11-3024.

Source: PubMed

3
Předplatit