Management of the Low Cardiac Output Syndrome Following Surgery for Congenital Heart Disease

Heather K Chandler, Roxanne Kirsch, Heather K Chandler, Roxanne Kirsch

Abstract

The purpose of this review is to discuss the management of the low cardiac output syndrome (LCOS) following surgery for congenital heart disease. The LCOS is a well-recognized, frequent post-operative complication with an accepted collection of hemodynamic and physiologic aberrations. Approximately 25% of children experience a decrease in cardiac index of less than 2 L/min/m2 within 6-18 hours after cardiac surgery. Post-operative strategies that may be used to manage patients as risk for or in a state of low cardiac output include the use of hemodynamic monitoring, enabling a timely and accurate assessment of cardiovascular function and tissue oxygenation; optimization of ventricular loading conditions; the judicious use of inotropic agents; an appreciation of and the utilization of positive pressure ventilation for circulatory support; and, in some circumstances, mechanical circulatory support. All interventions and strategies should culminate in improving the relationship between oxygen supply and demand, ensuring adequate tissue oxygenation.

Figures

Fig. (1)
Fig. (1)
Scatterplots showing serial measurements of cardiac index (top) as determined by thermodilution techniques and inotropic support (bottom) in 122 patients after the arterial switch operation for transposition of the great arteries. Cardiac index fell during the first postoperative night, returning to baseline values by 24 hours after surgery. TGA/IVA, transposition of the great arteries with intact ventricular septum; TGA/VSD, TGA with a ventricular septal defect; DHCA, deep hypothermic circulatory arrest; Wernovsky G et al. Circulation 1995; 92: 2226-35. [used with permission].

References

    1. Parr G.V., Blackstone E.H., Kirklin J.W. Cardiac performance and mortality early after intracardiac surgery in infants and young children. Circulation. 1975;51(5):867–874. doi: 10.1161/01.CIR.51.5.867.
    1. Wernovsky G., Wypij D., Jonas R.A., Mayer J.E., Jr, Hanley F.L., Hickey P.R., Walsh A.Z., Chang A.C., Castañeda A.R., Newburger J.W., Wessel D.L. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92(8):2226–2235. doi: 10.1161/01.CIR.92.8.2226.
    1. Asimakopoulos G., Taylor K.M. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann. Thorac. Surg. 1998;66(6):2135–2144. doi: 10.1016/S0003-4975(98)00727-9.
    1. Nagashima M, Imai Y, Seo K, et al. Effect of hemofiltrated whole blood pump priming on hemodynamics and respiratory function after the arterial switch operation in neonates. ann Thorac Surg. 2000;70:1901–1906.
    1. Davies M.J., Nguyen K., Gaynor J.W., Elliott M.J. Modified ultrafiltration improves left ventricular systolic function in infants after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 1998;115(2):361–369. doi: 10.1016/S0022-5223(98)70280-6.
    1. Hiramatsu T., Imai Y., Kurosawa H., Takanashi Y., Aoki M., Shinoka T., Nakazawa M. Effects of dilutional and modified ultrafiltration in plasma endothelin-1 and pulmonary vascular resistance after the Fontan procedure. Ann. Thorac. Surg. 2002;73(3):861–865. doi: 10.1016/S0003-4975(01)03564-0.
    1. Connors A.F., Jr, McCaffree D.R., Gray B.A. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N. Engl. J. Med. 1983;308(5):263–267. doi: 10.1056/NEJM198302033080508.
    1. Lobos A-T., Lee S., Menon K. Capillary refill time and cardiac output in children undergoing cardiac catheterization. Pediatr. Crit. Care Med. 2012;13(2):136–140. doi: 10.1097/PCC.0b013e318220afdc.
    1. Bailey J.M., Miller B.E., Lu W., Tosone S.R., Kanter K.R., Tam V.K. The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology. 1999;90(4):1012–1018. doi: 10.1097/00000542-199904000-00014.
    1. Chang A.C., Atz A.M., Wernovsky G., Burke R.P., Wessel D.L. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit. Care Med. 1995;23(11):1907–1914. doi: 10.1097/00003246-199511000-00018.
    1. Hoffman T.M., Wernovsky G., Atz A.M., Kulik T.J., Nelson D.P., Chang A.C., Bailey J.M., Akbary A., Kocsis J.F., Kaczmarek R., Spray T.L., Wessel D.L. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107(7):996–1002. doi: 10.1161/01.CIR.0000051365.81920.28.
    1. Wright E.M., Skoyles J., Sherry K.M. Milrinone in the treatment of low output states following cardiac surgery. Eur. J. Anaesthesiol. Suppl. 1992;5(5) Suppl.:21–26.
    1. Alten J.A., Borasino S., Toms R., Law M.A., Moellinger A., Dabal R.J. Early initiation of arginine vasopressin infusion in neonates after complex cardiac surgery. Pediatr. Crit. Care Med. 2012;13(3):300–304. doi: 10.1097/PCC.0b013e31822f1753.
    1. Burton G.L., Kaufman J., Goot B.H., da Cruz E.M. The use of Arginine Vasopressin in neonates following the Norwood procedure. Cardiol. Young. 2011;21(5):536–544. doi: 10.1017/S1047951111000370.
    1. Mastropietro C.W., Davalos M.C., Seshadri S., Walters H.L., III, Delius R.E. Clinical response to arginine vasopressin therapy after paediatric cardiac surgery. Cardiol. Young. 2013;23(3):387–393. doi: 10.1017/S1047951112000996.
    1. Landry D.W., Levin H.R., Gallant E.M., Ashton R.C., Jr, Seo S., D’Alessandro D., Oz M.C., Oliver J.A. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–1125. doi: 10.1161/01.CIR.95.5.1122.
    1. Mastropietro C.W., Rossi N.F., Clark J.A., Chen H., Walters H., III, Delius R., Lieh-Lai M., Sarnaik A.P. Relative deficiency of arginine vasopressin in children after cardiopulmonary bypass. Crit. Care Med. 2010;38(10):2052–2058. doi: 10.1097/CCM.0b013e3181eed91d.
    1. Lechner E., Hofer A., Mair R., Moosbauer W., Sames-Dolzer E., Tulzer G. Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur. J. Pediatr. 2007;166(12):1221–1227. doi: 10.1007/s00431-006-0400-0.
    1. Menon K. Use of hydrocortisone for refractory shock in children. Crit. Care Med. 2013;41(10):e294–e295. doi: 10.1097/CCM.0b013e31828cf478.
    1. Shore S., Nelson D.P., Pearl J.M., Manning P.B., Wong H., Shanley T.P., Keyser T., Schwartz S.M. Usefulness of corticosteroid therapy in decreasing epinephrine requirements in critically ill infants with congenital heart disease. Am. J. Cardiol. 2001;88(5):591–594. doi: 10.1016/S0002-9149(01)01751-9.
    1. Suominen P.K., Dickerson H.A., Moffett B.S., Ranta S.O., Mott A.R., Price J.F., Heinle J.S., McKenzie E.D., Fraser C.D., Jr, Chang A.C. Hemodynamic effects of rescue protocol hydrocortisone in neonates with low cardiac output syndrome after cardiac surgery. Pediatr. Crit. Care Med. 2005;6(6):655–659. doi: 10.1097/01.PCC.0000185487.69215.29.
    1. Verweij E.J., Hogenbirk K., Roest A.A., van Brempt R., Hazekamp M.G., de Jonge E. Serum cortisol concentration with exploratory cut-off values do not predict the effects of hydrocortisone administration in children with low cardiac output after cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2012;15(4):685–689. doi: 10.1093/icvts/ivs292.
    1. Costello J.M., Graham D.A., Morrow D.F., Potter-Bynoe G., Sandora T.J., Laussen P.C. Risk factors for central line-associated bloodstream infection in a pediatric cardiac intensive care unit. Pediatr. Crit. Care Med. 2009;10(4):453–459. doi: 10.1097/PCC.0b013e318198b19a.
    1. Mastropietro C.W., Barrett R., Davalos M.C., Zidan M., Valentine K.M., Delius R.E., Walters H.L., III Cumulative corticosteroid exposure and infection risk after complex pediatric cardiac surgery. Ann. Thorac. Surg. 2013;95(6):2133–2139. doi: 10.1016/j.athoracsur.2013.02.026.
    1. Pasquali S.K., Hall M., Li J.S., Peterson E.D., Jaggers J., Lodge A.J., Marino B.S., Goodman D.M., Shah S.S. Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the Pediatric Health Information Systems database. Circulation. 2010;122(21):2123–2130. doi: 10.1161/CIRCULATIONAHA.110.948737.
    1. Viires N., Sillye G., Aubier M., Rassidakis A., Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J. Clin. Invest. 1983;72(3):935–947. doi: 10.1172/JCI111065.
    1. Hussain S.N., Roussos C. Distribution of respiratory muscle and organ blood flow during endotoxic shock in dogs. J. Appl. Physiol. 1985;59(6):1802–1808.
    1. Lequier L., Joffe A.R., Robertson C.M., Dinu I.A., Wongswadiwat Y., Anton N.R., Ross D.B., Rebeyka I.M., Western Canadian Complex Pediatric Therapies Program Follow-up Group Two-year survival, mental, and motor outcomes after cardiac extracorporeal life support at less than five years of age. J. Thorac. Cardiovasc. Surg. 2008;136(4):976–983.e3. doi: 10.1016/j.jtcvs.2008.02.009.
    1. Joffe A.R., Lequier L., Robertson C.M. Pediatric outcomes after extracorporeal membrane oxygenation for cardiac disease and for cardiac arrest: a review. ASAIO J. 2012;58(4):297–310. doi: 10.1097/MAT.0b013e31825a21ff.
    1. Kumar T.K., Zurakowski D., Dalton H., Talwar S., Allard-Picou A., Duebener L.F., Sinha P., Moulick A. Extracorporeal membrane oxygenation in postcardiotomy patients: factors influencing outcome. J. Thorac. Cardiovasc. Surg. 2010;140(2):330–336.e2. doi: 10.1016/j.jtcvs.2010.02.034.
    1. Wolf M.J., Kanter K.R., Kirshbom P.M., Kogon B.E., Wagoner S.F. Extracorporeal cardiopulmonary resuscitation for pediatric cardiac patients. Ann. Thorac. Surg. 2012;94(3):874–879. doi: 10.1016/j.athoracsur.2012.04.040.
    1. Chai P.J., Jacobs J.P., Dalton H.J., Costello J.M., Cooper D.S., Kirsch R., Rosenthal T., Graziano J.N., Quintessenza J.A. Extracorporeal cardiopulmonary resuscitation for post-operative cardiac arrest: indications, techniques, controversies, and early results--what is known (and unknown). Cardiol. Young. 2011;21(Suppl. 2):109–117. doi: 10.1017/S1047951111001685.

Source: PubMed

3
Předplatit