The role of intestinal microbiota in cardiovascular disease

Mengchao Jin, Zhiyuan Qian, Jiayu Yin, Weiting Xu, Xiang Zhou, Mengchao Jin, Zhiyuan Qian, Jiayu Yin, Weiting Xu, Xiang Zhou

Abstract

Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N-oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.

Keywords: coronary artery disease; heart failure; hypertension; intestinal microbiota.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

© 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Figures

Figure 1
Figure 1
The role of intestinal microbiota in cardiovascular diseases. Dietary habits, environmental factors and intestinal infection can alter the gut microbiota from eubiosis to dysbiosis. The intestinal microbiota metabolizes choline, phosphatidylcholine, L‐carnitine and betaine, generating trimethylamine (TMA), which is oxidized into trimethylamine N‐oxide (TMAO) by hepatic flavin monooxygenases (FMO3). TMAO can accelerate atherosclerosis by inhibiting reverse cholesterol transport and accumulating macrophage cholesterol. Other intestinal microflora metabolite, short chain fatty acids (SCFAs), regulate blood pressure by combining with Olfr78 and GPR41. Secondary bile acid and indoxyl sulfate are associated with heart failure. Specific treatments including antibiotics, faecal microbiota transplantation (FMT), pro/prebiotics and dietary intervention can improve gut dysbiosis

References

    1. Mentz RJ, O'Connor CM, Granger BB, et al. Palliative care and hospital readmissions in patients with advanced heart failure: Insights from the PAL‐HF trial. Am Heart J. 2018;204:202‐204. 10.1016/j.ahj.2018.07.010.
    1. Martín‐Sánchez FJ, Llopis García G, González‐Colaço Harmand M, et al. Identification of senior at risk scale predicts 30‐day mortality among older patients with acute heart failure. Med Intensiva. 2018. 10.1016/j.medin.2018.07.009.
    1. Mogensen UM, Gong J, Jhund PS, et al. Effect of sacubitril/valsartan on recurrent events in the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM‐HF). Eur J Heart Fail. 2018;20:760‐768.
    1. Watanabe K, Igarashi M, Li X, et al. Dietary soybean protein ameliorates high‐fat diet‐induced obesity by modifying the gut microbiota‐dependent biotransformation of bile acids. PLoS ONE. 2018;13:e0202083.
    1. Yang Q, Lin SL, Kwok MK, et al. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a mendelian randomization study. Am J Epidemiol. 2018;187:1916‐1922.
    1. D'Odorico I, Di Bella S, Monticelli J, et al. Role of fecal microbiota transplantation in inflammatory bowel disease. J Dig Dis. 2018;19:322‐334.
    1. El‐Salhy M, Mazzawi T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2018;12:439‐445.
    1. Dart A. Gut microbiota bile acid metabolism controls cancer immunosurveillance. Nat Rev Microbiol. 2018;16:453.
    1. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845.
    1. Adnan S, Nelson JW, Ajami NJ, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49:96‐104.
    1. Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Failure. 2016;4:220‐227.
    1. Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787‐8803.
    1. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222‐227.
    1. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337‐340.
    1. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635‐1638.
    1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355‐1359.
    1. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65‐80.
    1. Jones RM. The influence of the gut microbiota on host physiology: in pursuit of mechanisms. Yale J Biol Med. 2016;89:285‐297.
    1. Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1‐15.
    1. Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006;113:929‐937.
    1. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108:4592‐4598. 10.1073/pnas.1011383107.
    1. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245.
    1. Ziganshina EE, Sharifullina DM, Lozhkin AP, et al. Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE. 2016;11:e0164836.
    1. Lanter BB, Sauer K, Davies DG. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. MBio. 2014;5:e01206‐e01214.
    1. Chan YK, Brar MS, Kirjavainen PV, et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A‐FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE(‐/‐) mice. BMC Microbiol. 2016;16:264.
    1. Stepankova R, Tonar Z, Bartova J, et al. Absence of microbiota (germ‐free conditions) accelerates the atherosclerosis in ApoE‐deficient mice fed standard low cholesterol diet. J Atheroscler Thromb. 2010;17:796‐804.
    1. Kasahara K, Tanoue T, Yamashita T, et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res. 2017;58:519‐528.
    1. Kramer CD, Simas AM, He X, et al. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe. 2017;45:19‐30.
    1. Calandrini CA, Ribeiro AC, Gonnelli AC, et al. Microbial composition of atherosclerotic plaques. Oral Dis. 2014;20:e128‐e134.
    1. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106:858‐867.
    1. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57‐63.
    1. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575‐1584.
    1. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576‐585.
    1. Wang Z, Tang WH, Buffa JA, et al. Prognostic value of choline and betaine depends on intestinal microbiota‐generated metabolite trimethylamine‐N‐oxide. Eur Heart J. 2014;35:904‐910.
    1. Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine‐N‐oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17:49‐60.
    1. Warrier M, Shih DM, Burrows AC, et al. The TMAO‐generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10(3):326–338. 10.1016/j.celrep.2014.12.036.
    1. Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 1997;386:292‐296.
    1. Charach G, Rabinovich A, Argov O, et al. The role of bile acid excretion in atherosclerotic coronary artery disease. Int J Vasc Med. 2012;2012:949672.
    1. Lu Y, Feskens EJ, Boer JM, Müller M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis. 2010;210:14‐27.
    1. Schwarz M, Russell DW, Dietschy JM, Turley SD. Marked reduction in bile acid synthesis in cholesterol 7alpha‐hydroxylase‐deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res. 1998;39:1833‐1843.
    1. Li XS, Obeid S, Klingenberg R, et al. Gut microbiota‐dependent trimethylamine N‐oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814‐824.
    1. Haghikia A, Li XS, Liman TG, et al. Gut Microbiota‐dependent trimethylamine N‐oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38:2225‐2235.
    1. Senthong V, Wang Z, Li XS, et al. Intestinal microbiota‐generated metabolite trimethylamine‐N‐oxide and 5‐year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE‐like patient cohort. J Am Heart Assoc. 2016;5:e002816 10.1161/JAHA.115.002816.
    1. Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe‐generated metabolite trimethylamine‐N‐oxide as cardiovascular risk biomarker: a systematic review and dose‐response meta‐analysis. Eur Heart J. 2017;38:2948‐2956.
    1. Sanz Y, Moya‐Pérez A. Microbiota, inflammation and obesity. Adv Exp Med Biol. 2014;817:291‐317.
    1. Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331‐1340.
    1. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.
    1. Yan Q, Gu Y, Li X, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381.
    1. Castaner O, Goday A, Park YM, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.
    1. Natividad JM, Agus A, Planchais J, et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28:737‐749.
    1. Gavin PG, Mullaney JA, Loo D, et al. Intestinal metaproteomics reveals host‐microbiota interactions in subjects at risk for type 1 diabetes. Diabetes Care. 2018;41:2178‐2186.
    1. Sivaprakasam S, Prasad PD, Singh N. Benefits of short‐chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144‐151.
    1. Pluznick JL. Microbial short‐chain fatty acids and blood pressure regulation. Curr Hypertens Rep. 2017;19:25.
    1. Pluznick JL, Zou DJ, Zhang X, et al. Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci USA. 2009;106:2059‐2064.
    1. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota‐derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410‐4415.
    1. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5:202‐207.
    1. Nutting CW, Islam S, Daugirdas JT. Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am J Physiol. 1991;261:H561‐H567.
    1. Brown D, Sorscher EJ, Ausiello DA, Benos DJ. Immunocytochemical iocalization of Na+ channels in rat kidney medulla. Am J Physiol. 1989;256:F366‐F369.
    1. Daugirdas JT, Swanson V, Islam S, et al. Acetate causes endothelium‐independent increases in cyclic AMP in rat caudal artery. Am J Physiol. 1988;255:H1378‐H1383.
    1. Maggioni AP, Dahlström U, Filippatos G, et al. EURObservational Research Programme: regional differences and 1‐year follow‐up results of the Heart Failure Pilot Survey (ESC‐HF Pilot). Eur J Heart Fail. 2013;15:808‐817.
    1. Mentz RJ, Cotter G, Cleland JG, et al. International differences in clinical characteristics, management, and outcomes in acute heart failure patients: better short‐term outcomes in patients enrolled in Eastern Europe and Russia in the PROTECT trial. Eur J Heart Fail. 2014;16:614‐624.
    1. Cleland JG, Chiswell K, Teerlink JR, et al. Predictors of postdischarge outcomes from information acquired shortly after admission for acute heart failure: a report from the Placebo‐Controlled Randomized Study of the Selective A1 Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized With Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function (PROTECT) Study. Circ Heart Fail. 2014;7:76‐87.
    1. Moshkelgosha S, Masetti G, Berchner‐Pfannschmidt U, et al. Gut microbiome in BALB/c and C57BL/6J mice undergoing experimental thyroid autoimmunity associate with differences in immunological responses and thyroid function. Horm Metab Res. 2018;50:932‐941.
    1. Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun. 2018;74:28‐42.
    1. Phillips Campbell RB, Duffourc MM, Schoborg RV, et al. Aberrant fecal flora observed in guinea pigs with pressure overload is mitigated in animals receiving vagus nerve stimulation therapy. Am J Physiol Gastrointest Liver Physiol. 2016;311:G754‐G762.
    1. Organ CL, Otsuka H, Bhushan S, et al. Choline Diet and its gut microbe‐derived metabolite, trimethylamine N‐oxide, exacerbate pressure overload‐induced heart failure. Circ Heart Fail. 2016;9:e002314.
    1. Nagatomo Y, Tang WH. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Cardiac Fail. 2015;21:973‐980.
    1. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1561‐1569.
    1. Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe‐generated metabolite trimethylamine‐N‐oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64:1908‐1914.
    1. Suzuki T, Heaney LM, Bhandari SS, et al. Trimethylamine N‐oxide and prognosis in acute heart failure. Heart. 2016;102:841‐848.
    1. Li Z, Wu Z, Yan J, et al. Gut microbe‐derived metabolite trimethylamine N‐oxide induces cardiac hypertrophy and fibrosis. Lab Invest. 2018. 10.1038/s41374-018-0091-y.
    1. Wu CC, Hsieh MY, Hung SC, et al. Serum indoxyl sulfate associates with postangioplasty thrombosis of dialysis grafts. J Am Soc Nephrol. 2016;27:1254‐1264.
    1. Lin CJ, Chuang CK, Jayakumar T, et al. Serum p‐cresyl sulfate predicts cardiovascular disease and mortality in elderly hemodialysis patients. Arch Med Sci. 2013;4:662‐668.
    1. Poesen R, Claes K, Evenepoel P, et al. Microbiota‐derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27:3479‐3487.
    1. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p‐Cresyl Sulfate. Toxins (Basel). 2017;9(2):E52.
    1. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183‐1196.
    1. Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416‐431. 10.1007/s13238-018-0549-0.
    1. Galla S, Chakraborty S, Cheng X, et al. Disparate effects of antibiotics on hypertension. Physiol Genomics. 2018;50:837‐845.
    1. Rune I, Rolin B, Larsen C, et al. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE‐deficient mice. PLoS ONE. 2016;11:e0146439.
    1. Cheng YJ, Nie XY, Chen XM, et al. The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol. 2015;66:2173‐2184.
    1. Gallo A, Passaro G, Gasbarrini A, et al. Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol. 2016;22:7186‐7202.
    1. Khan MY, Dirweesh A, Khurshid T, Siddiqui WJ. Comparing fecal microbiota transplantation to standard‐of‐care treatment for recurrent Clostridium difficile infection: a systematic review and meta‐analysis. Eur J Gastro Hepatol. 2018;30:1309‐1317.
    1. D'Odorico I, Di Bella S, Monticelli J, et al. Role of fecal microbiota transplantation in inflammatory bowel disease. J Dig Dis. 2018;19:322‐334.
    1. El‐Salhy M, Mazzawi T. Fecal microbiota transplantation for managing i rritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2018;12:439‐445.
    1. Smits LP, Kootte RS, Levin E, et al. Effect of vegan fecal microbiota transplantation on Carnitine‐ and Choline‐derived trimethylamine‐N‐oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc. 2018;7:e008342 10.1161/JAHA.117.008342.
    1. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:E1021 10.3390/nu9091021.
    1. Mohania D, Kansal VK, Shah D, et al. Therapeutic effect of probiotic dahi on plasma, aortic, and hepatic lipid profile of hypercholesterolemic rats. J Cardiovasc Pharmacol Ther. 2013;18:490‐497.
    1. Yoo SR, Kim YJ, Park DY, et al. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet‐induced obesity. Obesity (Silver Spring). 2013;21:2571‐2578.
    1. Lew LC, Choi SB, Khoo BY, et al. Lactobacillus plantarum DR7 reduces cholesterol via phosphorylation of AMPK that down‐regulated the mRNA expression of HMG‐CoA reductase. Korean J Food Sci Anim Resour. 2018;38:350‐361.
    1. Korcz E, Kerényi Z, Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol‐lowering effects. Food Function. 2018;9:3057‐3068.
    1. Bier A, Braun T, Khasbab R, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt‐sensitive hypertension rat model. Nutrients. 2018;10:E1154 10.3390/nu10091154.
    1. Hu J, Luo H, Wang J, et al. Enteric dysbiosis‐linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med. 2017;49:e370.
    1. Miranda PM, De Palma G, Serkis V, et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 2018;6:57.
    1. Marques FZ, Nelson E, Chu PY, et al. High‐fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964‐977.
    1. Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine‐N‐oxide (TMAO)‐induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210‐e02215.
    1. Wang Z, Roberts AB, Buffa JA, et al. Non‐lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585‐1595.
    1. Gao C, Catucci G, Gilardi G, Sadeghi SJ. Binding of methimazole and NADP(H) to human FMO3: In vitro and in silico studies. Int J Biol Macromol. 2018;118:460‐468.
    1. Cashman JR, Xiong Y, Lin J, et al. In vitro and in vivo inhibition of human flavin‐containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem Pharmacol. 1999;58:1047‐1055.
    1. Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N‐oxide, a Flavin‐containing Monooxygenase 3 (FMO3)‐mediated host‐microbiome metabolic axis implicated in health and disease. Drug Metab Dispos. 2016;44:1839‐1850.
    1. Halkjær SI, Christensen AH, Lo B, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double‐blind placebo‐controlled study. Gut. 2018;67:2107‐2115.
    1. Konstantinov SR, Peppelenbosch MP. Fecal microbiota transfer may increase irritable bowel syndrome and inflammatory bowel diseases–associated bacteria. Gastroenterology. 2013;144:e19‐e20.
    1. Yoo JY, Kim SS. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients. 2016;8:173.

Source: PubMed

3
Předplatit