Effects of Chokeberries ( Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial

Julie Sangild, Anne Faldborg, Cecilie Schousboe, Maja Døvling Kaspersen Fedder, Lars Porskjær Christensen, Astrid Komal Lausdahl, Eva Christensen Arnspang, Søren Gregersen, Henrik Byrial Jakobsen, Ulla Breth Knudsen, Jens Fedder, Julie Sangild, Anne Faldborg, Cecilie Schousboe, Maja Døvling Kaspersen Fedder, Lars Porskjær Christensen, Astrid Komal Lausdahl, Eva Christensen Arnspang, Søren Gregersen, Henrik Byrial Jakobsen, Ulla Breth Knudsen, Jens Fedder

Abstract

Background: Chokeberries (Aronia spp.) are known to exhibit both direct and indirect antioxidant properties and have been associated with beneficial effects on human health, including cardiovascular risk factors (inflammation, serum lipids, sugars, blood pressure), oxidative stress, and semen quality. This prospective, double-blinded, randomized, crossover clinical trial was conducted to elucidate the effects of Aronia supplementation on these health targets in mildly hypercholesterolemic men. Methods: The standardized Aronia supplementation comprised three wild Aronia spp. (A. arbutifolia, A prunifolia and A. melanocarpa) and the Aronia hybrid × Sorbaronia mitschurinii (standardized to 150 mg anthocyanins daily). Participants (n = 109) were healthy men with respect to all outcome targets except for the total cholesterol level (5.0−7.0 mM). Participants were randomized to supplementation with either Aronia or placebo for 90 days, followed by a wash-out period and lastly the complementary supplementation. Effects on the health parameters were compared among both the whole group of men and in subgroups according to age, body mass index (BMI), lifestyle, dietary habits, and serum glutathione levels at baseline. The study is registered in ClinicalTrials.gov.: NCT03405753. Results: Glutathione levels were significantly improved after 90 days intake of Aronia supplementation compared to placebo in the subgroup of men with a low level of glutathione at baseline (p = 0.038) and a high coffee intake (p = 0.045). A significant decrease in levels of sperm DNA fragmentation and an increase in the percentage of motile sperm were observed in men aged >40 and in men with BMI > 25. Further, these parameters were significantly improved in the dietary subgroup defined by a high level of coffee intake. Total cholesterol and low-density lipoprotein-cholesterol levels decreased significantly in men <40 years after Aronia supplementation. No statistically significant effects were observed regarding blood pressure, markers of blood sugar regulation, hemoglobin A1c, superoxide dismutase, catalase, isoprostane levels, high sensitivity C reactive protein, or other semen parameters. Conclusions: This study demonstrated a significant increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in specific subgroups of men >40 years of age and BMI > 25 but did not demonstrate a significant effect in the overall analysis. The observed concurrent increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in subgroups of men, suggests that the endogenous phase II antioxidant glutathione is involved in the modulation of the observed cytoprotective effects. This study is a good foundation for further investigation of these cytoprotective effects in groups with oxidative stress in a dose−response study.

Keywords: Aronia supplementation; cholesterol; crossover clinical trial; cytoprotective effects; glutathione; oxidative stress.

Conflict of interest statement

Henrik Byrial Jakobsen, Byrial ApS supplied the Aronia preparation tested in this study.

Figures

Figure 1
Figure 1
Study Design.
Figure 2
Figure 2
Consort 2010 Flow Chart [50]. Illustrating the flow of the study participants.
Figure 3
Figure 3
Development in glutathione levels in blood samples following Aronia and placebo supplementation during the 270 days crossover designed. Note the high level of glutathione at follow-up after 90 days of Aronia intake. After the subsequent 90 days wash out, the glutathione baseline would be expected to drop to the level of baseline prior to Aronia supplementation but it only dropped halfway to the original baseline. This indicates a possible long-term effect of Aronia across the washout period. Blue lines indicate periods with 90 days Aronia supplementation, and the orange lines indicate periods with 90 days of placebo administration.

References

    1. Milic P., Jeremic J., Zivkovic V., Srejovic I., Jeremic N., Bradic J., Turnic T.N., Milosavljevic I., Bolevich S., Bolevich S., et al. Effects of different dietary regimes alone or in combination with standardized Aronia melanocarpa extract supplementation on lipid and fatty acids profiles in rats. Mol. Cell. Biochem. 2019;461:141–150. doi: 10.1007/s11010-019-03597-6.
    1. Dufour C., Villa-Rodriguez J.A., Furger C., Lessard-Lord J., Gironde C., Rigal M., Badr A., Desjardins Y., Guyonnet D. Cellular Antioxidant Effect of an Aronia Extract and Its Polyphenolic Fractions Enriched in Proanthocyanidins, Phenolic Acids, and Anthocyanins. Antioxidants. 2022;11:1561. doi: 10.3390/antiox11081561.
    1. Christensen L.P. Chapter 13—The Role of Direct and Indirect Polyphenolic Antioxidants in Protection Against Oxidative Stress. In: Watson R.R., Preedy V.R., Zibadi S., editors. Polyphenols: Mechanisms of Action in Human Health and Disease. 2nd ed. Academic Press; Cambridge, MA, USA: 2018. pp. 147–179.
    1. Kardum N., Milovanović B., Šavikin K., Zdunić G., Mutavdžin S., Gligorijević T., Spasić S. Beneficial Effects of Polyphenol-Rich Chokeberry Juice Consumption on Blood Pressure Level and Lipid Status in Hypertensive Subjects. J. Med. Food. 2015;18:1231–1238. doi: 10.1089/jmf.2014.0171.
    1. Kim Y.S., Young M.R., Bobe G., Colburn N.H., Milner J.A. Bioactive Food Components, Inflammatory Targets, and Cancer Prevention. Cancer Prev. Res. 2009;2:200–208. doi: 10.1158/1940-6207.CAPR-08-0141.
    1. Broncel M., Kozirog M., Duchnowicz P., Koter-Michalak M., Sikora J., Chojnowska-Jezierska J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. J. Pharmacol. Exp. Ther. 2010;16:CR28–CR34.
    1. Zheng W., Wang S.Y. Oxygen Radical Absorbing Capacity of Phenolics in Blueberries, Cranberries, Chokeberries, and Lingonberries. J. Agric. Food Chem. 2003;51:502–509. doi: 10.1021/jf020728u.
    1. Chrubasik C., Li G., Chrubasik S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. 2010;24:1107–1114. doi: 10.1002/ptr.3226.
    1. Li L., Li J., Xu H., Zhu F., Li Z., Lu H., Zhang J., Yang Z., Liu Y. The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice. Mediat. Inflamm. 2021;2021:372893. doi: 10.1155/2021/7372893.
    1. Kasprzak-Drozd K., Oniszczuk T., Soja J., Gancarz M., Wojtunik-Kulesza K., Markut-Miotła E., Oniszczuk A. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int. J. Mol. Sci. 2021;22:6541. doi: 10.3390/ijms22126541.
    1. Cikiriz N., Milosavljevic M.I., Jakovljevic B., Bolevich S., Jeremic M.J., Turnic T.R.N., Mitrovic M., Srejovic I.M., Bolevich S., Jakovljevic V. The influences of chokeberry extract supplementation on redox status and body composition in handball players during competition phase. Can. J. Physiol. Pharmacol. 2021;99:42–47. doi: 10.1139/cjpp-2020-0095.
    1. Pei R., Liu J., Martin D.A., Valdez J.C., Jeffety J., Barrett-Wilt G.A., Liu Z., Bolling B.W. Aronia Berry Supplementation Mitigates Inflammation in T Cell Transfer-Induced Colitis by Decreasing Oxidative Stress. Nutrients. 2019;11:1316. doi: 10.3390/nu11061316.
    1. Zhao Y., Liu X., Zheng Y., Liu W., Ding C. Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Sci. Rep. 2021;11:20558. doi: 10.1038/s41598-021-00071-6.
    1. Bakuradze T., Meiser P., Galan J., Richling E. DNA Protection by an Aronia Juice-Based Food Supplement. Antioxidants. 2021;10:857. doi: 10.3390/antiox10060857.
    1. Pawłowicz P., Stachowiak G., Bielak A., Wilczyński J. Administration of natural anthocyanins derived from chokeberry (Aronia melanocarpa) extract in the treatment of oligospermia in males with enhanced autoantibodies to oxidized low density lipoproteins (oLAB). The impact on fructose levels. Ginekol. Polska. 2001;72:848–853.
    1. Christiansen C.B., Mellbye F.B., Hermansen K., Jeppesen P.B., Gregersen S. Effects of Aronia melanocarpa on Cardiometabolic Diseases: A Systematic Review of Quasi-Design Studies and Randomized Controlled Trials. Rev. Diabet. Stud. 2022;18:76–92. doi: 10.1900/RDS.2022.18.76.
    1. Rahmani J., Clark C., Varkaneh H.K., Lakiang T., Vasanthan L., Onyeche V., Mousavi S., Zhang Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019;33:1981–1990. doi: 10.1002/ptr.6398.
    1. Yamane T., Imai M., Handa S., Harada N., Yamaji R., Sakamoto T., Ishida T., Inui H., Nakagaki T., Nakano Y. Aronia juice supplementation inhibits lipid accumulation in both normal and obesity model mice. Pharmanutrition. 2020;14:100223. doi: 10.1016/j.phanu.2020.100223.
    1. Tasic N., Jakovljevic V.L.J., Mitrovic M., Djindjic B., Tasic D., Dragisic D., Citakovic Z., Kovacevic Z., Radoman K., Zivkovic V., et al. Black chokeberry Aronia melanocarpa extract reduces blood pressure, glycemia and lipid profile in patients with metabolic syndrome: A prospective controlled trial. Mol. Cell. Biochem. 2021;476:2663–2673. doi: 10.1007/s11010-021-04106-4.
    1. Hawkins J., Hires C., Baker C., Keenan L., Bush M. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. J. Diet. Suppl. 2021;18:517–530. doi: 10.1080/19390211.2020.1800887.
    1. Tremellen K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Updat. 2008;14:243–258. doi: 10.1093/humupd/dmn004.
    1. Garrido N., Meseguer M., Alvarez J., Simón C., Pellicer A., Remohí J. Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil. Steril. 2004;82((Suppl. 3)):1059–1066. doi: 10.1016/j.fertnstert.2004.04.033.
    1. Khurana S., Venkataraman K., Hollingsworth A., Piche M., Tai T.C. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. Nutrients. 2013;5:3779–3827. doi: 10.3390/nu5103779.
    1. Fedder J. Nonsperm Cells in Human Semen: With Special Reference to Seminal Leukocytes and their Possible Influence on Fertility. Arch. Androl. 1996;36:41–65. doi: 10.3109/01485019608987883.
    1. Brieger K., Schiavone S., Miller F.J., Jr., Krause K.-H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659.
    1. Koter M., Franiak I., Strychalska K., Broncel M., Chojnowska-Jezierska J. Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia. Int. J. Biochem. Cell Biol. 2004;36:205–215. doi: 10.1016/S1357-2725(03)00195-X.
    1. Hansson G.K., Libby P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol. 2006;6:508–519. doi: 10.1038/nri1882.
    1. Rains J.L., Jain S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011;50:567–575. doi: 10.1016/j.freeradbiomed.2010.12.006.
    1. Pereira S., Park E., Mori Y., Haber C., Han P., Uchida T., Stavar L., Oprescu A., Koulajian K., Ivovic A., et al. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. Am. J. Physiol. Endocrinol. Metab. 2014;307:E34–E46. doi: 10.1152/ajpendo.00436.2013.
    1. John Aitken R., Clarkson J.S., Fishel S. Generation of Reactive Oxygen Species, Lipid Peroxidation, and Human Sperm Function. Biol. Reprod. 1989;41:183–197. doi: 10.1095/biolreprod41.1.183.
    1. Takeshima T., Usui K., Mori K., Asai T., Yasuda K., Kuroda S., Yumura Y. Oxidative stress and male infertility. Reprod. Med. Biol. 2020;20:41–52. doi: 10.1002/rmb2.12353.
    1. Alahmar A.T. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019;12:4–18. doi: 10.4103/jhrs.JHRS_150_18.
    1. Chen Y., Azad M.B., Gibson S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009;16:1040–1052. doi: 10.1038/cdd.2009.49.
    1. Shamsi M.B., Imam S.N., Dada R. Sperm DNA integrity assays: Diagnostic and prognostic challenges and implications in management of infertility. J. Assist. Reprod. Genet. 2011;28:1073–1085. doi: 10.1007/s10815-011-9631-8.
    1. Klop B., Elte J.W.F., Cabezas M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients. 2013;5:1218–1240. doi: 10.3390/nu5041218.
    1. National Heart, Lung and Blood Institute Cardiovascular Disease Is on the Rise, but We Know How to Curb It. We’ve Done It before. [(accessed on 9 September 2022)];2021 Available online: .
    1. Jørgensen N., Joensen U.N., Jensen T.K., Jensen M.B., Almstrup K., Olesen I.A., Juul A., Andersson A.-M., Carlsen E., Petersen J.H., et al. Human semen quality in the new millennium: A prospective cross-sectional population-based study of 4867 men. BMJ Open. 2012;2:e000990. doi: 10.1136/bmjopen-2012-000990.
    1. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014;20:1126–1167. doi: 10.1089/ars.2012.5149.
    1. Karlsen A., Retterstøl L., Laake P., Paur I., Bøhn S., Sandvik L., Blomhoff R. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr. 2007;137:1951–1954. doi: 10.1093/jn/137.8.1951.
    1. Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452. doi: 10.1016/j.bcp.2006.07.004.
    1. Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J., Spencer J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients. 2010;2:1106–1131. doi: 10.3390/nu2111106.
    1. Kowalczyk E., Fijałkowski P., Kura M., Krzesiński P., Błaszczyk J., Kowalski J., Smigielski J., Rutkowski M., Kopff M. The influence of anthocyanins from Aronia melanocarpa on selected parameters of oxidative stress and microelements contents in men with hypercholesterolemia. Pol. Merkur. Lekarski. 2005;19:651–653.
    1. Shih P.-H., Yeh C.-T., Yen G.-C. Anthocyanins Induce the Activation of Phase II Enzymes through the Antioxidant Response Element Pathway against Oxidative Stress-Induced Apoptosis. J. Agric. Food Chem. 2007;55:9427–9435. doi: 10.1021/jf071933i.
    1. Hussain T., Tan B., Yin Y., Blachier F., Tossou M., Rahu N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797.
    1. Wang H., Cao G., Prior R.L. Oxygen Radical Absorbing Capacity of Anthocyanins. J. Agric. Food Chem. 1997;45:304–309. doi: 10.1021/jf960421t.
    1. Christensen L.P., Christensen K.B. Polyphenols in Human Health and Disease. Academic Press; San Diego, CA, USA: 2014. The Role of Direct and Indirect Polyphenolic Antioxidants in Protection Against Oxidative Stress; pp. 289–309. Chapter 23.
    1. Taheri R., Connolly B.A., Brand M.H., Bolling B.W. Underutilized Chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) Accessions Are Rich Sources of Anthocyanins, Flavonoids, Hydroxycinnamic Acids, and Proanthocyanidins. J. Agric. Food Chem. 2013;61:8581–8588. doi: 10.1021/jf402449q.
    1. Brand M. Aronia: Native Shrubs With Untapped Potential. Arnoldia. 2009;67:14–25.
    1. Amann R.P. The cycle of the seminiferous epithelium in humans: A need to revisit? J. Androl. 2008;29:469–487. doi: 10.2164/jandrol.107.004655.
    1. CONSORT CONSORT 2010 Flow Diagram. 2010. [(accessed on 16 September 2022)]. Available online: .
    1. Wu X., Gu L., Prior R.L., McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004;52:7846–7856. doi: 10.1021/jf0486850.
    1. Bassuk S.S., Rifai N., Ridker P.M. High-sensitivity C-reactive protein: Clinical importance. Curr. Probl. Cardiol. 2004;29:439–493. doi: 10.1016/j.cpcardiol.2004.03.004.
    1. Thérond P., Auger J., Legrand A., Jouannet P. Alpha-Tocopherol in human spermatozoa and seminal plasma: Relationships with motility, antioxidant enzymes and leukocytes. Mol. Hum. Reprod. 1996;2:739–744. doi: 10.1093/molehr/2.10.739.
    1. Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871.
    1. Montuschi P., Barnes P.J., Roberts L.J., 2nd Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004;18:1791–1800. doi: 10.1096/fj.04-2330rev.
    1. Efsa Panel on Dietetic Products. Allergies N., Turck D., Bresson J.-L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K., Mangelsdorf I., et al. Guidance for the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. EFSA J. 2018;16:e05136.
    1. World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. World Health Organization; Geneva, Switzerland: 2010.
    1. Evenson D.P., Larson K.L., Jost L.K. Sperm Chromatin Structure Assay: Its Clinical Use for Detecting Sperm DNA Fragmentation in Male Infertility and Comparisons With Other Techniques. J. Androl. 2002;23:25–43. doi: 10.1002/j.1939-4640.2002.tb02599.x.
    1. Senn S.S. Cross-Over Trials in Clinical Research. 2nd ed. Wiley; Hoboken, NJ, USA: 2002.
    1. Committee for Proprietary Medicinal Products (CPMP): Points to consider on adjustment for baseline covariates. Stat. Med. 2004;23:701–709. doi: 10.1002/sim.1647.
    1. Patienthåndbogen BMI—Kropsmasseindeks. 2022. [(accessed on 16 September 2022)]. Available online:
    1. Hammoud A.O., Gibson M., Peterson C.M., Meikle A.W., Carrell D.T. Impact of male obesity on infertility: A critical review of the current literature. Fertil. Steril. 2008;90:897–904. doi: 10.1016/j.fertnstert.2008.08.026.
    1. Evenson D.P., Djira G., Kasperson K., Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil. Steril. 2020;114:311–320. doi: 10.1016/j.fertnstert.2020.03.028.
    1. Surhone L.M., Susan M.T.T., Marseken F. Analysis of 2x2 Cross-Over Designs Using T-Tests, NCSS Statistical Software. John Wiley & Sons Ltd.; Chichester, UK: 2010.
    1. Skoczyñska A., Jêdrychowska I., Porêba R., Affelska-Jercha A., Turczyn B., Wojakowska A., Andrzejak R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007;59:177–182.
    1. Naruszewicz M., Łaniewska I., Millo B., Dłużniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI) Atherosclerosis. 2007;194:e179–e184. doi: 10.1016/j.atherosclerosis.2006.12.032.
    1. Duchnowicz P., Nowicka A., Koter-Michalak M., Broncel M. In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2012;18:CR569–CR574. doi: 10.12659/MSM.883353.
    1. Pilaczynska-Szczesniak L., Skarpanska-Steinborn A., Deskur E., Basta P., Horoszkiewicz-Hassan M. The Influence of Chokeberry Juice Supplementation on the Reduction of Oxidative Stress Resulting from an Incremental Rowing Ergometer Exercise. Int. J. Sport Nutr. Exerc. Metab. 2005;15:48–58. doi: 10.1123/ijsnem.15.1.48.
    1. Skarpańska-Stejnborn A., Basta P., Sadowska J., Pilaczyńska-Szczeńniak L. Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers. J. Int. Soc. Sports Nutr. 2014;11:48. doi: 10.1186/s12970-014-0048-5.
    1. Xie L., Vance T., Kim B., Gil Lee S.G., Caceres C., Wang Y., Hubert P.A., Lee J.-Y., Chun O.K., Bolling B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2016;37:67–77. doi: 10.1016/j.nutres.2016.12.007.
    1. Nguyen R.H., Wilcox A.J., Skjaerven R., Baird D.D. Men’s body mass index and infertility. Hum. Reprod. 2007;22:2488–2493. doi: 10.1093/humrep/dem139.
    1. Sallmén M., Sandler D.P., Hoppin J.A., Blair A., Baird D.D. Reduced Fertility Among Overweight and Obese Men. Epidemiology. 2006;17:520–523. doi: 10.1097/01.ede.0000229953.76862.e5.
    1. Kort H.I., Massey J.B., Elsner C.W., Mitchell-Leef D., Shapiro D.B., Witt M.A., Roudebush W.E. Impact of Body Mass Index Values on Sperm Quantity and Quality. J. Androl. 2006;27:450–452. doi: 10.2164/jandrol.05124.
    1. Jensen T.K., Andersson A.M., Jørgensen N., Andersen A.G., Carlsen E., Petersen J.H., Skakkebaek N.E. Body mass index in relation to semen quality and reproductive hormones among 1558 Danish men. Fertil. Steril. 2004;82:863–870. doi: 10.1016/j.fertnstert.2004.03.056.
    1. Vaughan D.A., Tirado E., Garcia D., Datta V., Sakkas D. DNA fragmentation of sperm: A radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Hum. Reprod. 2020;35:2188–2196. doi: 10.1093/humrep/deaa159.
    1. Fedder M.D.K., Jakobsen H.B., Giversen I., Christensen L.P., Parner E.T., Fedder J. An Extract of Pomegranate Fruit and Galangal Rhizome Increases the Numbers of Motile Sperm: A Prospective, Randomised, Controlled, Double-Blinded Trial. PLoS ONE. 2014;9:e108532. doi: 10.1371/journal.pone.0108532.
    1. Silberstein T., Har-Vardi I., Harlev A., Friger M., Hamou B., Barac T., Levitas E., Saphier O. Antioxidants and Polyphenols: Concentrations and Relation to Male Infertility and Treatment Success. Oxidative Med. Cell. Longev. 2016;2016:9140925. doi: 10.1155/2016/9140925.
    1. Salehi P., Shahrokhi S.Z., Kamran T., Ajami A., Taghiyar S., Deemeh M.R., Student T.K. Effect of antioxidant therapy on the sperm DNA integrity improvement; a longitudinal cohort study. Int. J. Reprod. Biomed. (IJRM) 2019;17:99. doi: 10.18502/ijrm.v17i2.3987.
    1. Santi D., Spaggiari G., Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management–meta-analyses. Reprod. Biomed. Online. 2018;37:315–326. doi: 10.1016/j.rbmo.2018.06.023.
    1. Rex A., Wu C., Aagaard J., Fedder J. DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered? J. Clin. Med. 2021;10:1310. doi: 10.3390/jcm10061310.
    1. Ricci E., Viganò P., Cipriani S., Somigliana E., Chiaffarino F., Bulfoni A., Parazzini F. Coffee and caffeine intake and male infertility: A systematic review. Nutr. J. 2017;16:37. doi: 10.1186/s12937-017-0257-2.
    1. Esposito F., Morisco F., Verde V., Ritieni A., Alezio A., Caporaso N., Fogliano V. Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment. Pharmacol. Ther. 2003;17:595–601. doi: 10.1046/j.1365-2036.2003.01429.x.
    1. Takahashi A., Sakaguchi H., Higuchi O., Suzuki T., Chiji H. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model. Food Chem. 2019;277:323–326. doi: 10.1016/j.foodchem.2018.10.094.
    1. Kim J.-K., Choi M.S., Yoo H.H., Kim D.-H. The Intake of Coffee Increases the Absorption of Aspirin in Mice by Modifying Gut Microbiome. Pharmaceutics. 2022;14:746. doi: 10.3390/pharmaceutics14040746.
    1. Li D., Zhang Y., Liu Y., Sun R., Xia M. Purified Anthocyanin Supplementation Reduces Dyslipidemia, Enhances Antioxidant Capacity, and Prevents Insulin Resistance in Diabetic Patients. J. Nutr. 2015;145:742–748. doi: 10.3945/jn.114.205674.
    1. Zhu Y., Ling W., Guo H., Song F., Ye Q., Zou T., Li D., Zhang Y., Li G., Xiao Y., et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013;23:843–849. doi: 10.1016/j.numecd.2012.06.005.
    1. Kuntz S., Kunz C., Herrmann J., Borsch C.H., Abel G., Fröhling B., Dietrich H., Rudloff S. Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: Results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. Br. J. Nutr. 2014;112:925–936. doi: 10.1017/s0007114514001482.
    1. Bakuradze T., Tausend A., Galan J., Groh I.A.M., Berry D., Tur J.A., Marko D., Richling E. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free. Radic. Res. 2019;53:1045–1055. doi: 10.1080/10715762.2019.1618851.
    1. Agarwal A., Virk G., Ong C., Du Plessis S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health. 2014;32:1–17. doi: 10.5534/wjmh.2014.32.1.1.
    1. Kefer J.C., Agarwal A., Sabanegh E. Role of antioxidants in the treatment of male infertility. Int. J. Urol. 2009;16:449–457. doi: 10.1111/j.1442-2042.2009.02280.x.

Source: PubMed

3
Předplatit