Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases

Xiao Meng Pei, Martin Ho Yin Yeung, Alex Ngai Nick Wong, Hin Fung Tsang, Allen Chi Shing Yu, Aldrin Kay Yuen Yim, Sze Chuen Cesar Wong, Xiao Meng Pei, Martin Ho Yin Yeung, Alex Ngai Nick Wong, Hin Fung Tsang, Allen Chi Shing Yu, Aldrin Kay Yuen Yim, Sze Chuen Cesar Wong

Abstract

The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.

Keywords: COVID-19 detection; bacteria identification; cancer marker detection; molecular diagnosis; next-generation sequencing; targeted sequencing.

Conflict of interest statement

A.C.S.Y. and A.K.Y.Y. are employed by Codex Genetics Limited. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. No conflicts of interest were declared by all the other authors.

Figures

Figure 1
Figure 1
General workflow of a NGS experiment [6]. Firstly, nucleic acid extraction and isolation is performed on specimen types, including blood and FFPE. Next, the library preparation is performed, and it includes fragmenting, performing end repairs, and the addition of adaptors to the nucleic acid fragments. Target enrichment is highly important when performing targeted sequencing to enrich the genes of interest. For sequencing, the right choice of platform, such as the number of samples per sequencing run, desired read length, and level of coverage for the assay, and using paired-end or single reads also are critical factors to affect the level of coverage, and the cost of the assay is taken into consideration prior sequencing. Lastly, the methods used in the bioinformatics analysis in the designed pipeline, including alignment, variant calling, and tertiary analyses, will be conducted for interpretation and application.
Figure 2
Figure 2
Illustration of (AC) index hopping and (D) the resultant misalignment for two different samples (libraries). (A) During the library preparation, the unique Illumina i5 and i7 indexes would prepare and attach to individual sample DNA fragments. (B) After each sample had been uniquely indexed, the two samples can be mixed and ready for sequencing. (C) During sequencing, the demultiplexing algorithm would read the sample i5/i7 index and the indexes. Once all the indexes were finished reading, the sample read would be available for the downstream data analysis. (D) Through index hopping processing, some i5 or i7 indexes could be wound up across samples and affect the reading. Such a misalignment of sample reading would interfere with the actual interpretation of the results in a downstream bioinformatic data analysis.
Figure 3
Figure 3
Combinatorial indexing and index hopping in a targeted sequencing panel [131]. (A) In a combinatorial index plate, i5 indexes are the same across the column, while the i7 index is the same across the row. (B) As a practice avoiding index carryover if A1 to C2 (6 wells in red rectangles) are adopted as indexes for a previous NGS run. Rows A to C, whose i5 indexes are the same (30 wells in blue), and columns 1 to 2, whose i7 indexes are the same (10 wells in blue), should be avoided. Indexes D3 to E6 (8 wells in a green rectangles) share a non-repetition of neither i5 nor i7 of the previous run and, hence, can be used for the current NGS run. (C) In the PKD1/PKD2-targeted sequencing panel, the differentiation of PKD1 and PKD2 of the same patient sample can be done by a 2-plex index, which PKD1 barcoded with well A1 and PKD2 barcoded with well A2. If index hopping occurs, the PKD1 read misligated with PKD2 index may be mapped as PKD2 is read, leading to the misalignment or false positive of a heterozygous variant.

References

    1. Bewicke-Copley F., Kumar E.A., Palladino G., Korfi K., Wang J. Applications and analysis of targeted genomic sequencing in cancer studies. Comput. Struct. Biotechnol. J. 2019;17:1348–1359. doi: 10.1016/j.csbj.2019.10.004.
    1. Kulkarni P., Frommolt P. Challenges in the setup of large-scale next-generation sequencing analysis workflows. Comput. Struct. Biotechnol. J. 2017;15:471–477. doi: 10.1016/j.csbj.2017.10.001.
    1. Nakagawa H., Wardell C., Furuta M., Taniguchi H., Fujimoto A. Cancer whole-genome sequencing: Present and future. Oncogene. 2015;34:5943–5950. doi: 10.1038/onc.2015.90.
    1. Petersen B.-S., Fredrich B., Hoeppner M.P., Ellinghaus D., Franke A. Opportunities and challenges of whole-genome and-exome sequencing. BMC Genet. 2017;18:1–13. doi: 10.1186/s12863-017-0479-5.
    1. Paskey A.C., Frey K.G., Schroth G., Gross S., Hamilton T., Bishop-Lilly K.A. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. BMC Genom. 2019;20:155. doi: 10.1186/s12864-019-5543-2.
    1. Mertes F., Elsharawy A., Sauer S., van Helvoort J.M., van der Zaag P.J., Franke A., Nilsson M., Lehrach H., Brookes A.J. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genom. 2011;10:374–386. doi: 10.1093/bfgp/elr033.
    1. Berger M.F., Mardis E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018;15:353–365. doi: 10.1038/s41571-018-0002-6.
    1. John G., Sahajpal N.S., Mondal A.K., Ananth S., Williams C., Chaubey A., Rojiani A.M., Kolhe R. Next-generation sequencing (NGS) in COVID-19: A tool for SARS-CoV-2 diagnosis, monitoring new strains and phylodynamic modeling in molecular epidemiology. Curr. Issues Mol. Biol. 2021;43:61. doi: 10.3390/cimb43020061.
    1. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463.
    1. Heather J.M., Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107:1–8. doi: 10.1016/j.ygeno.2015.11.003.
    1. Ronaghi M., Uhlén M., Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–365. doi: 10.1126/science.281.5375.363.
    1. Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D. The Role of Bioinformatics in Agriculture. Apple Academic Press; Palm Bay, FL, USA: 2014. Comparison of next-generation sequencing systems; pp. 31–56.
    1. Wheeler D.A., Srinivasan M., Egholm M., Shen Y., Chen L., McGuire A., He W., Chen Y.-J., Makhijani V., Roth G.T. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–876. doi: 10.1038/nature06884.
    1. Lupski J.R., Reid J.G., Gonzaga-Jauregui C., Rio Deiros D., Chen D.C., Nazareth L., Bainbridge M., Dinh H., Jing C., Wheeler D.A. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. 2010;362:1181–1191. doi: 10.1056/NEJMoa0908094.
    1. Wong A.N.N., He Z., Leung K.L., To C.C.K., Wong C.Y., Wong S.C.C., Yoo J.S., Chan C.K.R., Chan A.Z., Lacambra M.D., et al. Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal Cancers. Cancers. 2022;14:3780. doi: 10.3390/cancers14153780.
    1. McCabe M.J., Gauthier M.-E.A., Chan C.-L., Thompson T.J., De Sousa S., Puttick C., Grady J.P., Gayevskiy V., Tao J., Ying K. Development and validation of a targeted gene sequencing panel for application to disparate cancers. Sci. Rep. 2019;9:17052. doi: 10.1038/s41598-019-52000-3.
    1. Leung H.Y., Yeung M.H.Y., Leung W.T., Wong K.H., Tang W.Y., Cho W.C.S., Wong H.T., Tsang H.F., Wong Y.K.E., Pei X.M., et al. The current and future applications of in situ hybridization technologies in anatomical pathology. Expert Rev. Mol. Diagn. 2022;22:5–18. doi: 10.1080/14737159.2022.2007076.
    1. Sagaert X., Vanstapel A., Verbeek S. Tumor heterogeneity in colorectal cancer: What do we know so far? Pathobiology. 2018;85:72–84. doi: 10.1159/000486721.
    1. Kalman L.V., Datta V., Williams M., Zook J.M., Salit M.L., Han J.-Y. Development and characterization of reference materials for genetic testing: Focus on public partnerships. Ann. Lab. Med. 2016;36:513. doi: 10.3343/alm.2016.36.6.513.
    1. Petersen J.L., Coleman S.J. Next-Generation Sequencing in Equine Genomics. Vet. Clin. Equine Pract. 2020;36:195–209. doi: 10.1016/j.cveq.2020.03.002.
    1. Wadman M. James Watson’s genome sequenced at high speed. Nature. 2008;452:788. doi: 10.1038/452788b.
    1. Muir P., Li S., Lou S., Wang D., Spakowicz D.J., Salichos L., Zhang J., Weinstock G.M., Isaacs F., Rozowsky J., et al. The real cost of sequencing: Scaling computation to keep pace with data generation. Genome Biol. 2016;17:53. doi: 10.1186/s13059-016-0917-0.
    1. Schwarze K., Buchanan J., Taylor J.C., Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 2018;20:1122–1130. doi: 10.1038/gim.2017.247.
    1. Alfares A., Aloraini T., Subaie L.A., Alissa A., Qudsi A.A., Alahmad A., Mutairi F.A., Alswaid A., Alothaim A., Eyaid W., et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genet. Med. 2018;20:1328–1333. doi: 10.1038/gim.2018.41.
    1. Klau J., Abou Jamra R., Radtke M., Oppermann H., Lemke J.R., Beblo S., Popp B. Exome first approach to reduce diagnostic costs and time-retrospective analysis of 111 individuals with rare neurodevelopmental disorders. Eur. J. Hum. Genet. 2022;30:117–125. doi: 10.1038/s41431-021-00981-z.
    1. Masri A., Hamamy H. Cost Effectiveness of Whole Exome Sequencing for Children with Developmental Delay in a Developing Country: A Study from Jordan. J. Pediatr. Neurol. 2021;20:20–23. doi: 10.1055/s-0040-1722265.
    1. Gaudin M., Desnues C. Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front. Microbiol. 2018;9:2924. doi: 10.3389/fmicb.2018.02924.
    1. Nagy-Szakal D., Couto-Rodriguez M., Wells H.L., Barrows J.E., Debieu M., Butcher K., Chen S., Berki A., Hager C., Boorstein R.J. Targeted Hybridization Capture of SARS-CoV-2 and Metagenomics Enables Genetic Variant Discovery and Nasal Microbiome Insights. Microbiol. Spectr. 2021;9:e00197-21. doi: 10.1128/Spectrum.00197-21.
    1. Klempt P., Brož P., Kašný M., Novotný A., Kvapilová K., Kvapil P. Performance of targeted library preparation solutions for SARS-CoV-2 whole genome analysis. Diagnostics. 2020;10:769. doi: 10.3390/diagnostics10100769.
    1. Schenk D., Song G., Ke Y., Wang Z. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2. PLoS ONE. 2017;12:e0181062. doi: 10.1371/journal.pone.0181062.
    1. Samorodnitsky E., Jewell B.M., Hagopian R., Miya J., Wing M.R., Lyon E., Damodaran S., Bhatt D., Reeser J.W., Datta J. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum. Mutat. 2015;36:903–914. doi: 10.1002/humu.22825.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Tsang H.F., Chan L.W.C., Cho W.C.S., Yu A.C.S., Yim A.K.Y., Chan A.K.C., Ng L.P.W., Wong Y.K.E., Pei X.M., Li M.J.W. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti-Infect. Ther. 2021;19:877–888. doi: 10.1080/14787210.2021.1863146.
    1. Wu S.Y., Yau H.S., Yu M.Y., Tsang H.F., Chan L.W.C., Cho W.C.S., Shing Yu A.C., Yuen Yim A.K., Li M.J., Wong Y.K.E. The diagnostic methods in the COVID-19 pandemic, today and in the future. Expert Rev. Mol. Diagn. 2020;20:985–993. doi: 10.1080/14737159.2020.1816171.
    1. Tsang H.F., Leung W.M.S., Chan L.W.C., Cho W.C.S., Wong S.C.C. Performance comparison of the Cobas® Liat® and Cepheid® GeneXpert® systems on SARS-CoV-2 detection in nasopharyngeal swab and posterior oropharyngeal saliva. Expert Rev. Mol. Diagn. 2021;21:515–518. doi: 10.1080/14737159.2021.1919513.
    1. Tsang H.F., Yu A.C.S., Wong H.T., Leung W.M.S., Chiou J., Wong Y.K.E., Yim A.K.Y., Tsang D.N.C., Tsang A.K., Wong W.T. Whole genome amplicon sequencing and phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from lineage B. 1.36. 27 isolated in Hong Kong. Expert Rev. Mol. Diagn. 2022;22:119–124. doi: 10.1080/14737159.2022.2015330.
    1. Meredith L.W., Hamilton W.L., Warne B., Houldcroft C.J., Hosmillo M., Jahun A.S., Curran M.D., Parmar S., Caller L.G., Caddy S.L. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: A prospective genomic surveillance study. Lancet Infect. Dis. 2020;20:1263–1271. doi: 10.1016/S1473-3099(20)30562-4.
    1. Illumina COVIDSeq Test | SARS-CoV-2 NGS test (for the COVID-19 Coronavirus) [(accessed on 27 May 2021)]. Available online: .
    1. Bhoyar R.C., Jain A., Sehgal P., Divakar M.K., Sharma D., Imran M., Jolly B., Ranjan G., Rophina M., Sharma S. High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next-generation sequencing. PLoS ONE. 2021;16:e0247115. doi: 10.1371/journal.pone.0247115.
    1. Yang Y., Walls S.D., Gross S.M., Schroth G.P., Jarman R.G., Hang J. The Human Virome. Springer; Berlin/Heidelberg, Germany: 2018. Targeted sequencing of respiratory viruses in clinical specimens for pathogen identification and genome-wide analysis; pp. 125–140.
    1. Tsang H.F., Yu A.C.S., Jin N., Yim A.K.Y., Leung W.M.S., Lam K.W., Cho W.C.S., Chiou J., Wong S.C.C. The clinical application of metagenomic next-generation sequencing for detecting pathogens in bronchoalveolar lavage fluid: Case reports and literature review. Expert Rev. Mol. Diagn. 2022;22:575–582. doi: 10.1080/14737159.2022.2071607.
    1. Charre C., Ginevra C., Sabatier M., Regue H., Destras G., Brun S., Burfin G., Scholtes C., Morfin F., Valette M. Evaluation of NGS-based approaches for SARS-CoV-2 whole genome characterisation. Virus Evol. 2020;6:veaa075. doi: 10.1093/ve/veaa075.
    1. Thermo Fisher Scientific Advances in Epidemiological Research Using Next-Generation Sequencing. [(accessed on 27 May 2021)]. Available online: .
    1. Biosciences A. Targeted Sequencing of SARS-CoV-2: Swift RNA Library Kit and Arbor Biosciences Mybaits Expert Virus Panel (1st ed.) [(accessed on 27 May 2021)]. Available online:
    1. Illumina Respiratory Pathogen ID/AMR Panel (with COVID-19) | NGS Enrichment Kit. [(accessed on 27 May 2021)]. Available online: .
    1. Illumina Respiratory Virus Oligo Panel. [(accessed on 27 May 2021)]. Available online: .
    1. Papoutsis A., Borody T., Dolai S., Daniels J., Steinberg S., Barrows B., Hazan S. Detection of SARS-CoV-2 from patient fecal samples by whole genome sequencing. Gut Pathog. 2021;13:1–8. doi: 10.1186/s13099-021-00398-5.
    1. Roche KAPA Target Enrichment Panel for COVID-19 Research. [(accessed on 27 May 2021)]. Available online: .
    1. Alessandrini F., Caucci S., Onofri V., Melchionda F., Tagliabracci A., Bagnarelli P., Di Sante L., Turchi C., Menzo S. Evaluation of the ion AmpliSeq SARS-CoV-2 research panel by massive parallel sequencing. Genes. 2020;11:929. doi: 10.3390/genes11080929.
    1. Marine R.L., Magaña L.C., Castro C.J., Zhao K., Montmayeur A.M., Schmidt A., Diez-Valcarce M., Ng T.F.F., Vinjé J., Burns C.C. Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. J. Virol. Methods. 2020;280:113865. doi: 10.1016/j.jviromet.2020.113865.
    1. Tringe S.G., Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 2008;11:442–446. doi: 10.1016/j.mib.2008.09.011.
    1. Chakravorty S., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69:330–339. doi: 10.1016/j.mimet.2007.02.005.
    1. D’Amore R., Ijaz U.Z., Schirmer M., Kenny J.G., Gregory R., Darby A.C., Shakya M., Podar M., Quince C., Hall N. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 2016;17:1–20. doi: 10.1186/s12864-015-2194-9.
    1. Patel J.B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 2001;6:313–321. doi: 10.1007/BF03262067.
    1. Biosystems A. MicroSEQ 500 16S rDNA Identification [User Guide] (G ed.) [(accessed on 27 May 2021)]. Available online: .
    1. Illumina 16S and ITS rRNA Sequencing | Identify Bacteria & Fungi with NGS. [(accessed on 27 May 2021)]. Available online: .
    1. Hao D., Gu X., Xiao P., Peng Y. Chemical and biological research of Clematis medicinal resources. Chin. Sci. Bull. 2013;58:1120–1129. doi: 10.1007/s11434-012-5628-7.
    1. Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Fungal Barcoding Consortium Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109.
    1. Qiagen QIAseq 16S/ITS Screening Panels and Index Kits. [(accessed on 27 May 2021)]. Available online: .
    1. Scientific., T Ion 16S Metagenomics Solution | Thermo Fisher Scientific-NL. [(accessed on 27 May 2021)]. Available online: .
    1. Schröttner P., Gunzer F., Schüppel J., Rudolph W.W. Identification of rare bacterial pathogens by 16S rRNA gene sequencing and MALDI-TOF MS. JoVE (J. Vis. Exp.) 2016;113:e53176.
    1. Woo P.C., Lau S.K., Teng J.L., Tse H., Yuen K.-Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008;14:908–934. doi: 10.1111/j.1469-0691.2008.02070.x.
    1. Boers S.A., Jansen R., Hays J.P. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1059–1070. doi: 10.1007/s10096-019-03520-3.
    1. Deurenberg R.H., Bathoorn E., Chlebowicz M.A., Couto N., Ferdous M., García-Cobos S., Kooistra-Smid A.M., Raangs E.C., Rosema S., Veloo A.C. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 2017;243:16–24. doi: 10.1016/j.jbiotec.2016.12.022.
    1. Muhamad Rizal N.S., Neoh H.-M., Ramli R., A/LK Periyasamy P.R., Hanafiah A., Abdul Samat M.N., Tan T.L., Wong K.K., Nathan S., Chieng S. Advantages and limitations of 16S rRNA next-generation sequencing for pathogen identification in the diagnostic microbiology laboratory: Perspectives from a middle-income country. Diagnostics. 2020;10:816. doi: 10.3390/diagnostics10100816.
    1. Janda J.M., Abbott S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007;45:2761–2764. doi: 10.1128/JCM.01228-07.
    1. Fox G.E., Wisotzkey J.D., Jurtshuk P., Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Evol. Microbiol. 1992;42:166–170. doi: 10.1099/00207713-42-1-166.
    1. McDonough S.J., Bhagwate A., Sun Z., Wang C., Zschunke M., Gorman J.A., Kopp K.J., Cunningham J.M. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PloS ONE. 2019;14:e0211400. doi: 10.1371/journal.pone.0211400.
    1. So A.P., Vilborg A., Bouhlal Y., Koehler R.T., Grimes S.M., Pouliot Y., Mendoza D., Ziegle J., Stein J., Goodsaid F. A robust targeted sequencing approach for low input and variable quality DNA from clinical samples. NPJ Genom. Med. 2018;3:1–10. doi: 10.1038/s41525-017-0041-4.
    1. Roychowdhury S., Iyer M.K., Robinson D.R., Lonigro R.J., Wu Y.-M., Cao X., Kalyana-Sundaram S., Sam L., Balbin O.A., Quist M.J. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci. Transl. Med. 2011;3:111ra121. doi: 10.1126/scitranslmed.3003161.
    1. Wong S.Q., Li J., Tan A.Y., Vedururu R., Pang J.-M.B., Do H., Ellul J., Doig K., Bell A., McArthur G.A. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med. Genom. 2014;7:1–10. doi: 10.1186/1755-8794-7-23.
    1. Kerick M., Isau M., Timmermann B., Sültmann H., Herwig R., Krobitsch S., Schaefer G., Verdorfer I., Bartsch G., Klocker H. Targeted high throughput sequencing in clinical cancer settings: Formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med. Genom. 2011;4:68. doi: 10.1186/1755-8794-4-68.
    1. Miller E.M., Patterson N.E., Zechmeister J.M., Bejerano-Sagie M., Delio M., Patel K., Ravi N., Quispe-Tintaya W., Maslov A., Simmons N. Development and validation of a targeted next generation DNA sequencing panel outperforming whole exome sequencing for the identification of clinically relevant genetic variants. Oncotarget. 2017;8:102033. doi: 10.18632/oncotarget.22116.
    1. Schwarzenbach H., Hoon D.S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer. 2011;11:426–437. doi: 10.1038/nrc3066.
    1. Verma S., Moore M.W., Ringler R., Ghosal A., Horvath K., Naef T., Anvari S., Cotter P.D., Gunn S. Analytical performance evaluation of a commercial next generation sequencing liquid biopsy platform using plasma ctDNA, reference standards, and synthetic serial dilution samples derived from normal plasma. BMC Cancer. 2020;20:945. doi: 10.1186/s12885-020-07445-5.
    1. Breveglieri G., D’Aversa E., Finotti A., Borgatti M. Non-invasive prenatal testing using fetal DNA. Mol. Diagn. Ther. 2019;23:291–299. doi: 10.1007/s40291-019-00385-2.
    1. Gil M., Quezada M., Revello R., Akolekar R., Nicolaides K. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: Updated meta-analysis. Ultrasound Obstet. Gynecol. 2015;45:249–266. doi: 10.1002/uog.14791.
    1. Das S. Hemolytic Disease of the Fetus and Newborn. In: Tombak A., editor. Blood Groups. Intechopen; London, UK: 2019.
    1. Rieneck K., Clausen F.B., Dziegiel M.H. Noninvasive antenatal determination of fetal blood group using next-generation sequencing. Cold Spring Harb. Perspect. Med. 2016;6:a023093. doi: 10.1101/cshperspect.a023093.
    1. Pisapia P., Pepe F., Smeraglio R., Russo M., Rocco D., Sgariglia R., Nacchio M., De Luca C., Vigliar E., Bellevicine C. Cell free DNA analysis by SiRe® next generation sequencing panel in non small cell lung cancer patients: Focus on basal setting. J. Thorac. Dis. 2017;9:S1383. doi: 10.21037/jtd.2017.06.97.
    1. Alborelli I., Generali D., Jermann P., Cappelletti M.R., Ferrero G., Scaggiante B., Bortul M., Zanconati F., Nicolet S., Haegele J. Cell-free DNA analysis in healthy individuals by next-generation sequencing: A proof of concept and technical validation study. Cell Death Dis. 2019;10:1–11. doi: 10.1038/s41419-019-1770-3.
    1. Shen S.Y., Singhania R., Fehringer G., Chakravarthy A., Roehrl M.H., Chadwick D., Zuzarte P.C., Borgida A., Wang T.T., Li T. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–583. doi: 10.1038/s41586-018-0703-0.
    1. Lanman R.B., Mortimer S.A., Zill O.A., Sebisanovic D., Lopez R., Blau S., Collisson E.A., Divers S.G., Hoon D.S., Kopetz E.S. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PloS ONE. 2015;10:e0140712. doi: 10.1371/journal.pone.0140712.
    1. Guo Q., Wang J., Xiao J., Wang L., Hu X., Yu W., Song G., Lou J., Chen J. Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing. Mol. Cancer. 2018;17:1–5. doi: 10.1186/s12943-018-0875-0.
    1. Verhein K.C., Hariani G., Hastings S.B., Hurban P. Analytical validation of Illumina’s TruSight Oncology 500 ctDNA assay. Cancer Res. 2020;80:3114. doi: 10.1158/1538-7445.AM2020-3114.
    1. Birkenkamp-Demtröder K., Nordentoft I., Christensen E., Høyer S., Reinert T., Vang S., Borre M., Agerbæk M., Jensen J.B., Ørntoft T.F. Genomic alterations in liquid biopsies from patients with bladder cancer. Eur. Urol. 2016;70:75–82. doi: 10.1016/j.eururo.2016.01.007.
    1. Christensen E., Nordentoft I., Vang S., Birkenkamp-Demtröder K., Jensen J.B., Agerbæk M., Pedersen J.S., Dyrskjøt L. Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-20282-8.
    1. Bruno R., Fontanini G. Next generation sequencing for gene fusion analysis in lung cancer: A literature review. Diagnostics. 2020;10:521. doi: 10.3390/diagnostics10080521.
    1. Sakai K., Ohira T., Matsubayashi J., Yoneshige A., Ito A., Mitsudomi T., Nagao T., Iwamatsu E., Katayama J., Ikeda N. Performance of Oncomine Fusion Transcript kit for formalin-fixed, paraffin-embedded lung cancer specimens. Cancer Sci. 2019;110:2044–2049. doi: 10.1111/cas.14016.
    1. Hindi I., Shen G., Tan Q., Cotzia P., Snuderl M., Feng X., Jour G. Feasibility and clinical utility of a pan-solid tumor targeted RNA fusion panel: A single center experience. Exp. Mol. Pathol. 2020;114:104403. doi: 10.1016/j.yexmp.2020.104403.
    1. Solomon J., Benayed R., Hechtman J., Ladanyi M. Identifying patients with NTRK fusion cancer. Ann. Oncol. 2019;30:viii16–viii22. doi: 10.1093/annonc/mdz384.
    1. Davies K.D., Le A.T., Sheren J., Nijmeh H., Gowan K., Jones K.L., Varella-Garcia M., Aisner D.L., Doebele R.C. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J. Thorac. Oncol. 2018;13:1474–1482. doi: 10.1016/j.jtho.2018.05.041.
    1. Robinson P.N., Köhler S., Oellrich A., Wang K., Mungall C.J., Lewis S.E., Washington N., Bauer S., Seelow D., Krawitz P.J., et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 2014;24:340–348. doi: 10.1101/gr.160325.113.
    1. Washington N.L., Haendel M.A., Mungall C.J., Ashburner M., Westerfield M., Lewis S.E. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. 2009;7:e1000247. doi: 10.1371/journal.pbio.1000247.
    1. Swaminathan G.J., Bragin E., Chatzimichali E.A., Corpas M., Bevan A.P., Wright C.F., Carter N.P., Hurles M.E., Firth H.V. DECIPHER: Web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum. Mol. Genet. 2012;21:R37–R44. doi: 10.1093/hmg/dds362.
    1. Buske O.J., Girdea M., Dumitriu S., Gallinger B., Hartley T., Trang H., Misyura A., Friedman T., Beaulieu C., Bone W.P., et al. PhenomeCentral: A portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum. Mutat. 2015;36:931–940. doi: 10.1002/humu.22851.
    1. Philippakis A.A., Azzariti D.R., Beltran S., Brookes A.J., Brownstein C.A., Brudno M., Brunner H.G., Buske O.J., Carey K., Doll C., et al. The Matchmaker Exchange: A platform for rare disease gene discovery. Hum. Mutat. 2015;36:915–921. doi: 10.1002/humu.22858.
    1. Firth H.V., Richards S.M., Bevan A.P., Clayton S., Corpas M., Rajan D., Van Vooren S., Moreau Y., Pettett R.M., Carter N.P. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 2009;84:524–533. doi: 10.1016/j.ajhg.2009.03.010.
    1. Sobreira N., Schiettecatte F., Valle D., Hamosh A. GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. doi: 10.1002/humu.22844.
    1. Chong J.X., Yu J.-H., Lorentzen P., Park K.M., Jamal S.M., Tabor H.K., Rauch A., Saenz M.S., Boltshauser E., Patterson K.E., et al. Gene discovery for Mendelian conditions via social networking: De novo variants in KDM1A cause developmental delay and distinctive facial features. Anesthesia Analg. 2016;18:788–795. doi: 10.1038/gim.2015.161.
    1. Pais L.S., Snow H., Weisburd B., Zhang S., Baxter S.M., DiTroia S., O’Heir E., England E., Chao K.R., Lemire G., et al. seqr: A web-based analysis and collaboration tool for rare disease genomics. Hum. Mutat. 2022;43:698–707. doi: 10.1002/humu.24366.
    1. Adachi T., Kawamura K., Furusawa Y., Nishizaki Y., Imanishi N., Umehara S., Izumi K., Suematsu M. Japan’s initiative on rare and undiagnosed diseases (IRUD): Towards an end to the diagnostic odyssey. Eur. J. Hum. Genet. 2017;25:1025–1028. doi: 10.1038/ejhg.2017.106.
    1. Rasi C., Nilsson D., Magnusson M., Lesko N., Lagerstedt-Robinson K., Wedell A., Lindstrand A., Wirta V., Stranneheim H. PatientMatcher: A customizable Python-based open-source tool for matching undiagnosed rare disease patients via the Matchmaker Exchange network. Hum. Mutat. 2022;43:708–716. doi: 10.1002/humu.24358.
    1. Laurie S., Piscia D., Matalonga L., Corvó A., Fernández-Callejo M., Garcia-Linares C., Hernandez-Ferrer C., Luengo C., Martínez I., Papakonstantinou A., et al. The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Hum. Mutat. 2022;43:717–733. doi: 10.1002/humu.24353.
    1. Matchmaker Exchange Exchange Statistics and Publications - Matchmaker Exchange. [(accessed on 20 January 2023)]. Available online: .
    1. Azzariti D.R., Hamosh A. Genomic data sharing for novel Mendelian disease gene discovery: The matchmaker exchange. Annu. Rev. Genom. Hum. Genet. 2020;21:305–326. doi: 10.1146/annurev-genom-083118-014915.
    1. Palmer E.E., Kumar R., Gordon C.T., Shaw M., Hubert L., Carroll R., Rio M., Murray L., Leffler M., Dudding-Byth T., et al. A recurrent de novo nonsense variant in ZSWIM6 results in severe intellectual disability without frontonasal or limb malformations. Am. J. Hum. Genet. 2017;101:995–1005. doi: 10.1016/j.ajhg.2017.10.009.
    1. Ito Y., Carss K.J., Duarte S.T., Hartley T., Keren B., Kurian M.A., Marey I., Charles P., Mendonça C., Nava C., et al. De novo truncating mutations in WASF1 cause intellectual disability with seizures. Am. J. Hum. Genet. 2018;103:144–153. doi: 10.1016/j.ajhg.2018.06.001.
    1. Carapito R., Ivanova E.L., Morlon A., Meng L., Molitor A., Erdmann E., Kieffer B., Pichot A., Naegely L., Kolmer A., et al. ZMIZ1 variants cause a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 2019;104:319–330. doi: 10.1016/j.ajhg.2018.12.007.
    1. Friedman J., Smith D.E., Issa M.Y., Stanley V., Wang R., Mendes M.I., Wright M.S., Wigby K., Hildreth A., Crawford J.R. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat. Commun. 2019;10:1–10. doi: 10.1038/s41467-018-07067-3.
    1. Fischer-Zirnsak B., Segebrecht L., Schubach M., Charles P., Alderman E., Brown K., Cadieux-Dion M., Cartwright T., Chen Y., Costin C., et al. Haploinsufficiency of the notch ligand DLL1 causes variable neurodevelopmental disorders. Am. J. Hum. Genet. 2019;105:631–639. doi: 10.1016/j.ajhg.2019.07.002.
    1. Yıldırım M., Bektaş Ö., Tunçez E., Süt N.Y., Sayar Y., Öncül Ü., Teber S. A Case of Combined Oxidative Phosphorylation Deficiency 35 Associated with a Novel Missense Variant of the TRIT1 Gene. Mol. Syndr. 2022;13:164–170. doi: 10.1159/000518373.
    1. Skraban C.M., Wells C.F., Markose P., Cho M.T., Nesbitt A.I., Au P.B., Begtrup A., Bernat J.A., Bird L.M., Cao K., et al. WDR26 haploinsufficiency causes a recognizable syndrome of intellectual disability, seizures, abnormal gait, and distinctive facial features. Am. J. Hum. Genet. 2017;101:139–148. doi: 10.1016/j.ajhg.2017.06.002.
    1. Gurovich Y., Hanani Y., Bar O., Nadav G., Fleischer N., Gelbman D., Basel-Salmon L., Krawitz P.M., Kamphausen S.B., Zenker M., et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019;25:60–64. doi: 10.1038/s41591-018-0279-0.
    1. Hsieh T.-C., Bar-Haim A., Moosa S., Ehmke N., Gripp K.W., Pantel J.T., Danyel M., Mensah M.A., Horn D., Rosnev S., et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat. Genet. 2022;54:349–357. doi: 10.1038/s41588-021-01010-x.
    1. Auron A., Brophy P.D. Hyperammonemia in review: Pathophysiology, diagnosis, and treatment. Pediatr. Nephrol. 2012;27:207–222. doi: 10.1007/s00467-011-1838-5.
    1. Quinonez S.C., Thoene J.G. Citrullinemia Type I. [(accessed on 27 May 2021)]; Available online:
    1. Saheki T., Song Y.Z. Citrin Deficiency. [(accessed on 27 May 2021)]; Available online:
    1. Hudak M.L., Jones M.D., Jr., Brusilow S.W. Differentiation of transient hyperammonemia of the newborn and urea cycle enzyme defects by clinical presentation. J. Pediatr. 1985;107:712–719. doi: 10.1016/S0022-3476(85)80398-X.
    1. Genetics ACoM Newborn Screening ACT Sheet [Increased Citrulline] Amino Aciduria/Urea Cycle Disorder 2012. [(accessed on 27 May 2021)]. Available online: .
    1. McCormick E.M., Lott M.T., Dulik M.C., Shen L., Attimonelli M., Vitale O., Karaa A., Bai R., Pineda-Alvarez D.E., Singh L.N. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 2020;41:2028–2057. doi: 10.1002/humu.24107.
    1. Parr R.L., Maki J., Reguly B., Dakubo G.D., Aguirre A., Wittock R., Robinson K., Jakupciak J.P., Thayer R.E. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genom. 2006;7:1–13. doi: 10.1186/1471-2164-7-185.
    1. Illumina Mitochondrial DNA Sequencing on the iSeqTM 100 Sequencing System [Analyze Data] [(accessed on 27 May 2021)]. Available online: .
    1. Santibanez-Koref M., Griffin H., Turnbull D.M., Chinnery P.F., Herbert M., Hudson G. Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution. Mitochondrion. 2019;46:302–306. doi: 10.1016/j.mito.2018.08.003.
    1. El-Hattab A.W., Almannai M., Scaglia F. Melas. [(accessed on 27 May 2021)]; Available online:
    1. Jones B.E., Mkhaimer Y.G., Rangel L.J., Chedid M., Schulte P.J., Mohamed A.K., Neal R.M., Zubidat D., Randhawa A.K., Hanna C. Asymptomatic Pyuria as a Prognostic Biomarker in Autosomal Dominant Polycystic Kidney Disease. Kidney360. 2022;3:465. doi: 10.34067/KID.0004292021.
    1. Bogdanova N., Markoff A., Gerke V., McCluskey M., Horst J., Dworniczak B. Homologues to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. Genomics. 2001;74:333–341. doi: 10.1006/geno.2001.6568.
    1. Harris P.C., Rossetti S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 2010;6:197–206. doi: 10.1038/nrneph.2010.18.
    1. Tan A.Y., Michaeel A., Liu G., Elemento O., Blumenfeld J., Donahue S., Parker T., Levine D., Rennert H. Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing. J. Mol. Diagn. 2014;16:216–228. doi: 10.1016/j.jmoldx.2013.10.005.
    1. Ali H., Al-Mulla F., Hussain N., Naim M., Asbeutah A.M., AlSahow A., Abu-Farha M., Abubaker J., Al Madhoun A., Ahmad S. PKD1 duplicated regions limit clinical utility of whole exome sequencing for genetic diagnosis of autosomal dominant polycystic kidney disease. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-40761-w.
    1. Ros-Freixedes R., Battagin M., Johnsson M., Gorjanc G., Mileham A.J., Rounsley S.D., Hickey J.M. Impact of index hopping and bias towards the reference allele on accuracy of genotype calls from low-coverage sequencing. Genet. Sel. Evol. 2018;50:1–14. doi: 10.1186/s12711-018-0436-4.
    1. Illumina Effects of Index Misassignment on Multiplexing and Downstream Analysis [Analyze Data] 2018. [(accessed on 27 May 2021)]. Available online: .

Source: PubMed

3
Předplatit