Pre-Vitrification and Post-Warming Variables of Vitrified-Warmed Blastocysts That Are Predictable for Implantation

Anette Gabrielsen, Lea Hedegaard Iversen, Jens Fedder, Tilde Veng Eskildsen, Anne Lis Englund, Stine Ravn Hansen, Philippe Pinton, Anette Gabrielsen, Lea Hedegaard Iversen, Jens Fedder, Tilde Veng Eskildsen, Anne Lis Englund, Stine Ravn Hansen, Philippe Pinton

Abstract

Human IVF embryos that are not used for fresh transfer are cryopreserved by vitrification for later embryo transfers. This study evaluates pre-vitrification and post-warming embryo characteristics that are suitable to predict the chance of clinical pregnancy in single vitrified blastocyst transfer (SVBT) cycles. In a multicenter observational trial (IMBOS trial), embryos were cultured in a time-lapse system before and after vitrification. Associations between clinical pregnancy, morphokinetic parameters, blastocyst collapse, KIDScore D5, pre-vitrification and post-warming Gardner scores, post-warming blastocyst size and re-expansion rates before SVBT were analyzed in 182 SVBTs which resulted in 89 clinical pregnancies. No association was found between clinical pregnancy after SVBT and the number of collapses or the maximal collapse size before vitrification. The multifactorial analysis of pre-vitrification Gardner scores showed a significant association with clinical pregnancy for trophectoderm grading but not for expansion/hatching status and inner cell mass grading. A significant association with clinical pregnancy was found for the time to reach a blastocyst after pronuclear fading (tB-tPNf), KIDScore D5 and post-warming size but not the rate of expansion or maximal expansion size. The selection of blastocysts for SVBT could benefit from using pre-vitrification parameters like tB-tPNf, trophectoderm grading and post-warming blastocyst size.

Keywords: blastocyst; implantation; morphokinetics; morphology; pregnancy; prognostic factors; time-lapse; transfer; vitrification; warming.

Conflict of interest statement

A.G., L.H.I., T.V.E., J.F., A.L.E. and S.R.H. report no conflicts of interest. P.P. is an employee of Ferring Pharmaceuticals and owns stocks of Takeda Pharmaceuticals.

Figures

Figure 1
Figure 1
Correlation of Gardner and Schoolcraft score before vitrification and cryotransfer with a probability of a clinical pregnancy. The probability of clinical pregnancy in relation to the Gardner and Schoolcraft grading score is shown for 182 SVBT cycles in 130 subjects: (a,b) before vitrification and cryotransfer for expansion and hatching; (c,d) for ICM; (e,f) and trophectoderm, respectively. In univariate analysis, ICM and trophectoderm were significant before vitrification and cryotransfer, as indicated in the respective graph. ICM, inner cell mass; SVBT, single vitrified blastocyst transfer.
Figure 2
Figure 2
Probability of clinical pregnancy with number of collapses and maximal collapse size before vitrification. (a) The probability of clinical pregnancy in relation to the number of collapses during culture before vitrification (from 182 SVBT cycles in 129 subjects); (b) The association between the probability of clinical pregnancy and maximal collapse size as a percentage (from 179 SVBT cycles in 128 subjects) is based on the statistical analysis with slope (black line) and p-value indicated; neither were statistically significant. SVBT, single vitrified blastocyst transfer.
Figure 3
Figure 3
Probability of clinical pregnancy with blastocyst size after warming, maximal re-expansion and exponential rate of re-expansion. (a) Data on blastocyst size after warming in µm2; (b) Maximal re-expansion size in µm2; and (c) Exponential rate of re-expansion in %. For each graph, the datasets were grouped in approximately 10 equal parts with the number of cycles indicated for each bar. In each graph, the curve shows the estimated probabilities for pregnancy based on statistical analysis with the slope gradient (regression line) and p-value indicated. SVBT, single vitrified blastocyst transfer.
Figure 4
Figure 4
The probability of clinical pregnancy with tB-tPNf during culture and the association of tB-tPNf with size after warming and the exponential rate of re-expansion. (a) Data on development from the time of pronuclear fading to time of full blastocyst (tB-tPNf) from 180 SVBT cycles in 128 subjects were grouped in approximately 10 equal parts with the number of cycles indicated for each bar. The estimated probability for clinical (vital) pregnancy is based on the statistical analysis with slope and p-value indicated. The association between (b) tB-tPNf and size after warming and (c) the exponential rate of re-expansions are shown with the corresponding p-value and slope gradient (regression line).
Figure 4
Figure 4
The probability of clinical pregnancy with tB-tPNf during culture and the association of tB-tPNf with size after warming and the exponential rate of re-expansion. (a) Data on development from the time of pronuclear fading to time of full blastocyst (tB-tPNf) from 180 SVBT cycles in 128 subjects were grouped in approximately 10 equal parts with the number of cycles indicated for each bar. The estimated probability for clinical (vital) pregnancy is based on the statistical analysis with slope and p-value indicated. The association between (b) tB-tPNf and size after warming and (c) the exponential rate of re-expansions are shown with the corresponding p-value and slope gradient (regression line).

References

    1. Valojerdi M.R., Eftekhari-Yazdi P., Karimian L., Hassani F., Movaghar B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J. Assist. Reprod. Genet. 2009;26:347–354. doi: 10.1007/s10815-009-9318-6.
    1. Stehlik E., Stehlik J., Katayama K.P., Kuwayama M., Jambor V., Brohammer R., Kato O. Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod. Biomed. Online. 2005;11:53–57. doi: 10.1016/S1472-6483(10)61298-9.
    1. Maheshwari A., Pandey S., Shetty A., Hamilton M., Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: A systematic review and meta-analysis. Fertil. Steril. 2012;98:368–377.e9. doi: 10.1016/j.fertnstert.2012.05.019.
    1. Maheshwari A., Bhattacharya S. Elective frozen replacement cycles for all: Ready for prime time? Hum. Reprod. 2013;28:6–9. doi: 10.1093/humrep/des386.
    1. Wennerholm U.B., Henningsen A.K., Romundstad L.B., Bergh C., Pinborg A., Skjaerven R., Forman J., Gissler M., Nygren K.G., Tiitinen A. Perinatal outcomes of children born after frozen-thawed embryo transfer: A Nordic cohort study from the CoNARTaS group. Hum. Reprod. 2013;28:2545–2553. doi: 10.1093/humrep/det272.
    1. Drakopoulos P., Blockeel C., Stoop D., Camus M., de Vos M., Tournaye H., Polyzos N.P. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum. Reprod. 2016;31:370–376. doi: 10.1093/humrep/dev316.
    1. Zaat T., Zagers M., Mol F., Goddijn M., van Wely M., Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2021;2021:CD011184.
    1. Ahlstrom A., Westin C., Wikland M., Hardarson T. Prediction of live birth in frozen-thawed single blastocyst transfer cycles by pre-freeze and post-thaw morphology. Hum. Reprod. 2013;28:1199–1209. doi: 10.1093/humrep/det054.
    1. Gardner D.K., Schoolcraft W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999;11:307–311. doi: 10.1097/00001703-199906000-00013.
    1. Du Q.-Y., Wang E.-Y., Huang Y., Guo X.-Y., Xiong Y.-J., Yu Y.-P., Yao G.-D., Shi S.-L., Sun Y.-P. Blastocoele expansion degree predicts live birth after single blastocyst transfer for fresh and vitrified/warmed single blastocyst transfer cycles. Fertil. Steril. 2016;105:910–919.e1. doi: 10.1016/j.fertnstert.2015.12.014.
    1. Yin H., Jiang H., He R., Wang C., Zhu J., Li Y. The effects of blastocyst morphological score and blastocoele re-expansion speed after warming on pregnancy outcomes. Clin. Exp. Reprod. Med. 2016;43:31–37. doi: 10.5653/cerm.2016.43.1.31.
    1. Allen M., Hale L., Lantsberg D., Kieu V., Stevens J., Stern C., Gardner D.K., Mizrachi Y. Post-warming embryo morphology is associated with live birth: A cohort study of single vitrified-warmerd blastocyst transfer cycles. J. Assist. Reprod. Genet. 2022;39:417–425. doi: 10.1007/s10815-021-02390-z.
    1. Shu Y., Watt J., Gebhardt J., Dasig J., Appling J., Behr B. The value of fast blastocoele re-expansion in the selection of a viable thawed blastocyst for transfer. Fertil. Steril. 2009;91:401–406. doi: 10.1016/j.fertnstert.2007.11.083.
    1. Ebner T., Vanderzwalmen P., Shebl O., Urdl W., Moser M., Zech N., Tews G. Morphology of vitrified/warmed day-5 embryos predicts rates of implantation, pregnancy and live birth. Reprod. Biomed. Online. 2009;19:72–78. doi: 10.1016/S1472-6483(10)60049-1.
    1. Rubio I., Kuhlmann R., Agerholm I., Kirk J., Herrero J., Escribá M.-J., Bellver J., Meseguer M. Limited implantation success of direct-cleaved human zygotes: A time-lapse study. Fertil. Steril. 2012;98:1458–1463. doi: 10.1016/j.fertnstert.2012.07.1135.
    1. Findikli N., Oral E. Time-lapse embryo imaging technology: Does it improve the clinical results? Curr. Opin. Obstet. Gynecol. 2014;26:138–144. doi: 10.1097/GCO.0000000000000072.
    1. Herrero J., Meseguer M. Selection of high potential embryos using time-lapse imaging: The era of morphokinetics. Fertil. Steril. 2013;99:1030–1034. doi: 10.1016/j.fertnstert.2013.01.089.
    1. Kirkegaard K., Ahlstrom A., Ingerslev H.J., Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil. Steril. 2015;103:323–332. doi: 10.1016/j.fertnstert.2014.11.003.
    1. Meseguer M., Herrero J., Tejera A., Hilligsøe K.M., Ramsing N.B., Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 2011;26:2658–2671. doi: 10.1093/humrep/der256.
    1. Meseguer M., Rubio I., Cruz M., Basile N., Marcos J., Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: A retrospective cohort study. Fertil. Steril. 2012;98:1481–1489. doi: 10.1016/j.fertnstert.2012.08.016.
    1. Bodri D., Sugimoto T., Serna J.Y., Kawachiya S., Kato R., Matsumoto T. Blastocyst collapse is not an independent predictor of reduced live birth: A time-lapse study. Fertil. Steril. 2016;105:1476–1483.e3. doi: 10.1016/j.fertnstert.2016.02.014.
    1. Marcos J., Perez-Albal S., Mifsud A., Molla M., Landeras J., Meseguer M. Collapse of blastocysts is strongly related to lower implantation success: A time-lapse study. Hum. Reprod. 2015;30:2501–2508. doi: 10.1093/humrep/dev216.
    1. van Marion E.S., Chavli E.A., Laven J.S.E., Steegers-Theunissen R.P.M., Koster M.P.H., Baart E.B. Longitudinal surface measurements of human blastocysts show that the dynamics of blastocoel expansion are associated with fertilization method and ongoing pregnancy. Reprod. Biol. Endocrinol. 2022;20:53. doi: 10.1186/s12958-022-00917-2.
    1. Ebner T., Oppelt P., Radler E., Allerstorfer C., Habelsberger A., Mayer R.B., Shebl O. Morphokinetics of vitrified and warmed blastocysts predicts implantation potential. J. Assist. Reprod. Genet. 2017;34:239–244. doi: 10.1007/s10815-016-0855-5.
    1. Lin R., Feng G., Shu J., Zhang B., Zhou H., Gan X., Wang C., Chen H. Blastocoele re-expansion time in vitrified-warmed cycles is a strong predictor of clinical pregnancy outcome. J. Obstet. Gynaecol. Res. 2017;43:689–695. doi: 10.1111/jog.13257.
    1. Coello A., Meseguer M., Galán A., Alegre L., Remohí J., Cobo A. Analysis of the morphological dynamics of blastocysts after vitrification/warming: Defining new predictive variables of implantation. Fertil. Steril. 2017;108:659–666.e4. doi: 10.1016/j.fertnstert.2017.07.1157.
    1. Hershko-Klement A., Raviv S., Nemerovsky L., Rom T., Itskovich A., Bakhshi D., Shulman A., Ghetler Y. Standardization of Post-Vitrification Human Blastocyst Expansion as a Tool for Implantation Prediction. J. Clin. Med. 2022;11:2673. doi: 10.3390/jcm11092673.
    1. Andersen A.N., Nelson S.M., Fauser B.C.J.M., Garcia-Velasco J.A., Klein B.M., Arce J.C. Individualized versus conventional ovarian stimulation for in vitro fertilization: A multicenter, randomized, controlled, assessor-blinded, phase 3 noninferiority trial. Fertil. Steril. 2017;107:387–396. doi: 10.1016/j.fertnstert.2016.10.033.
    1. Huang T., Chinn K., Kosasa T., Ahn H., Kessel B. Morphokinetics of human blastocyst expansion in vitro. Reprod. Biomed. Online. 2016;33:659–667. doi: 10.1016/j.rbmo.2016.08.020.
    1. Ueno S., Uchiyama K., Kuroda T., Okimura T., Yabuuchi A., Kobayashi T., Kato K. Establishment of day 7 blastocyst freezing criteria using blastocyst diameter for single vitrified-warmed blastocyst transfer from live birth outcomes: A single-center, large cohort, retrospectively matched study. J. Assist. Reprod. Genet. 2020;37:2327–2335. doi: 10.1007/s10815-020-01882-8.
    1. Ahlström A., Westin C., Reismer E., Wikland M., Hardarson T. Trophectoderm morphology: An important parameter for predicting live birth after single blastocyst transfer. Hum. Reprod. 2011;26:3289–3296. doi: 10.1093/humrep/der325.
    1. Honma H., Baba T., Sasaki M., Hashiba Y., Ohno H., Fukunaga T., Endo T., Saito T., Asada Y. Trophectoderm morphology significantly affects the rates of ongoing pregnancy and miscarriage in frozen-thawed single-blastocyst transfer cycle in vitro fertilization. Fertil. Steril. 2012;98:361–367. doi: 10.1016/j.fertnstert.2012.05.014.
    1. Storr A., Venetis C.A., Cooke S., Kilani S., Ledger W. Inter-observer and intra-observer agreement between embryologists during selection of a single day 5 embryo for transfer: A multicentre study. Hum. Reprod. 2017;32:307–314. doi: 10.1093/humrep/dew330.
    1. Hammond E.R., Foong A.K.M., Rosli N., Morbeck D.E. Should we freeze it? Agreement on fate of borderline blastocysts is poor and does not improve with a modified blastocyst grading system. Hum. Reprod. 2020;35:1045–1053. doi: 10.1093/humrep/deaa060.
    1. Sciorio R., Saura R.H., Thong K.J., Algam M.E., Pickering S.J., Meseguer M. Blastocyst collapse as an embryo marker of low implantation potential: A time-lapse multicentre study. Zygote. 2020;28:139–147. doi: 10.1017/S0967199419000819.
    1. Sciorio R., Thong D., Thong K.J., Pickering S.J. Clinical pregnancy is significantly associated with the blastocyst width and area: A time-lapse study. J. Assist. Reprod. Genet. 2021;38:847–855. doi: 10.1007/s10815-021-02071-x.
    1. Sciorio R., Meseguer M. Focus on time-lapse analysis: Blastocyst collapse and morphometric assessment as new features of embryo viability. Reprod. Biomed. Online. 2021;43:821–832. doi: 10.1016/j.rbmo.2021.08.008.
    1. Zhao J., Yan Y., Huang X., Sun L., Li Y. Blastocoele expansion: An important parameter for predicting clinical success pregnancy after frozen-warmed blastocysts transfer. Reprod. Biol. Endocrinol. 2019;17:15. doi: 10.1186/s12958-019-0454-2.
    1. Giunco H., Connerney M., Boylan C., Koelper N., Mersereau J., Berger D.S. Embryo re-expansion does not affect clinical pregnancy rates in frozen embryo transfer cycles: A retrospective study. J. Assist. Reprod. Genet. 2021;38:2933–2939. doi: 10.1007/s10815-021-02319-6.
    1. Kovačič B., Taborin M., Vlaisavljević V. Artificial blastocoel collapse of human blastocysts before vitrification and its effect on re-expansion after warming—A prospective observational study using time-lapse microscopy. Reprod. Biomed. Online. 2018;36:121–129. doi: 10.1016/j.rbmo.2017.10.111.
    1. De Vos A., Van Landuyt L., De Rycke M., Verdyck P., Verheyen G., Buysse A., Belva F., Keymolen K., Tournaye H., Verpoest W. Multiple vitrification-warming and biopsy procedures on human embryos: Clinical outcome and neonatal follow-up of children. Hum. Reprod. 2020;35:2488–2496. doi: 10.1093/humrep/deaa236.
    1. Petersen B.M., Boel M., Montag M., Gardner D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum. Reprod. 2016;31:2231–2244. doi: 10.1093/humrep/dew188.
    1. Kato K., Ueno S., Berntsen J., Ito M., Shimazaki K., Uchiyama K., Okimura T. Comparing prediction of ongoing pregnancy and live birth outcomes in patients with advanced and younger maternal age patients using KIDScore™ day 5: A large-cohort retrospective study with single vitrified-warmed blastocyst transfer. Reprod. Biol. Endocrinol. 2021;19:98. doi: 10.1186/s12958-021-00767-4.
    1. Ueno S., Berntsen J., Ito M., Uchiyama K., Okimura T., Yabuuchi A., Kato K. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: A single-center large cohort retrospective study. Fertil. Steril. 2021;116:1172–1180. doi: 10.1016/j.fertnstert.2021.06.001.

Source: PubMed

3
Předplatit