NSCLC as the Paradigm of Precision Medicine at Its Finest: The Rise of New Druggable Molecular Targets for Advanced Disease

Anna Michelotti, Marco de Scordilli, Elisa Bertoli, Elisa De Carlo, Alessandro Del Conte, Alessandra Bearz, Anna Michelotti, Marco de Scordilli, Elisa Bertoli, Elisa De Carlo, Alessandro Del Conte, Alessandra Bearz

Abstract

Standard treatment for advanced non-small cell lung cancer (NSCLC) historically consisted of systemic cytotoxic chemotherapy until the early 2000s, when precision medicine led to a revolutionary change in the therapeutic scenario. The identification of oncogenic driver mutations in EGFR, ALK and ROS1 rearrangements identified a subset of patients who largely benefit from targeted agents. However, since the proportion of patients with druggable alterations represents a minority, the discovery of new potential driver mutations is still an urgent clinical need. We provide a comprehensive review of the emerging molecular targets in NSCLC and their applications in the advanced setting.

Keywords: HER2; KRAS; MET; NSCLC; NTRK; RET; new targets; oncogene-addiction; precision medicine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Timeline of FDA approval of targeted therapies for NSCLC (the colors are matched between driver alteration and targeted agent). The identification of actionable biomarkers led to significant progress in the treatment of NSCLC. EGFR alterations are detected in approximately 9% of NSCLC patients [6,7] and in the last two decades several agents targeting sensitive mutations received approval from the FDA. The first–generation EGFR–TKI inhibitors, erlotinib and gefitinib, received FDA approval for the treatment of advanced NSCLC in November 2004 and July 2015, respectively. Afatinib is the most studied second–generation inhibitor and received approval in July 2013. Two years later, the third–generation TKI-inhibitor, osimertinib, was initially approved for the treatment of EGFR–T790M mutation positive NSCLC, then in April 2018 it received approval as a first–line treatment for EGFR mutated NSCLC. ALK fusion–positive tumors account for 3.9% of NSCLC adenocarcinomas [8]. Several targeted drugs are available for this subset of patients: the first–generation drug crizotinib was approved in August 2011 and then the FDA expanded its use to treat ROS1–positive patients, a rare subgroup accounting for approximately 1% [9]. Second–generation ALK inhibitors, ceritinib, alectinib and brigatinib, were approved by the FDA between April 2014 and May 2020. The third–generation inhibitor lorlatinib received approval in 2018 for pretreated ALK–positive patients, and later in 2021 for the first–line setting. In June 2017, the FDA approved a combination therapy of dabrafenib and trametinib for BRAFV600E mutation–positive metastatic NSCLC, accounting for 1% of lung cancer patients [10]. NTRK is found in 1% of NSCLC [19,20]. Larotrectinib is a specific NTRK inhibitor approved in 2018 and represents the second tissue–agnostic FDA approval for the treatment of cancer Entrectinib received approval in August 2019 for both treatment of NTRK and ROS1- positive NSCLC. In the last two years, major progress has been made: in 2020 the FDA approved the targeted agents selpercatinib and pralsetinib for RET fusion–positive NSCLC (1–2%) [5,21]; capmatinib and tepotinib received FDA approval for NSCLC harboring a METex14 skipping mutation (2–4%) [22,23] in May 2020 and February 2021, respectively; sotorasib was approved in May 2021 for the treatment of KRASG12C mutated NSCLC (approximately 13%) [24] in patients who have received at least one prior systemic therapy.

References

    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. Allemani C., Matsuda T., Di Carlo V., Harewood R., Matz M., Nikšić M., Bonaventure A., Valkov M., Johnson C.J., Estève J., et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–1075. doi: 10.1016/S0140-6736(17)33326-3.
    1. Inamura K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front. Oncol. 2017;7:193. doi: 10.3389/fonc.2017.00193.
    1. Wu Y.-L., Tsuboi M., He J., John T., Grohe C., Majem M., Goldman J.W., Laktionov K., Kim S.-W., Kato T., et al. Osimertinib in Resected EGFR -Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020;383:1711–1723. doi: 10.1056/NEJMoa2027071.
    1. Wang M., Herbst R.S., Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021;27:1345–1356. doi: 10.1038/s41591-021-01450-2.
    1. Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L., Haserlat S.M., Supko J.G., Haluska F.G., et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004;350:2129–2139. doi: 10.1056/NEJMoa040938.
    1. Pao W., Miller V., Zakowski M., Doherty J., Politi K., Sarkaria I., Singh B., Heelan R., Rusch V., Fulton L., et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA. 2004;101:13306–13311. doi: 10.1073/pnas.0405220101.
    1. Cona M.S., Indini A., Testi A., Cresta S., Signorelli D., Garassino M.C., Sinno V., Sesana S., Pelosi G., de Braud F.G., et al. Druggable aberrations in solid tumors: An overview on ALK and ROS-1 status. Ann. Oncol. 2015;26:vi143. doi: 10.1093/annonc/mdv348.32.
    1. Bergethon K., Shaw A.T., Ou S.H.I., Katayama R., Lovly C.M., McDonald N.T., Massion P.P., Siwak-Tapp C., Gonzalez A., Fang R., et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 2012;30:863–870. doi: 10.1200/JCO.2011.35.6345.
    1. Kinno T., Tsuta K., Shiraishi K., Mizukami T., Suzuki M., Yoshida A., Suzuki K., Asamura H., Furuta K., Kohno T., et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014;25:138–142. doi: 10.1093/annonc/mdt495.
    1. Ramalingam S.S., Vansteenkiste J., Planchard D., Cho B.C., Gray J.E., Ohe Y., Zhou C., Reungwetwattana T., Cheng Y., Chewaskulyong B., et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020;382:41–50. doi: 10.1056/NEJMoa1913662.
    1. Mok T., Camidge D.R., Gadgeel S.M., Rosell R., Dziadziuszko R., Kim D.W., Pérol M., Ou S.H.I., Ahn J.S., Shaw A.T., et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 2020;31:1056–1064. doi: 10.1016/j.annonc.2020.04.478.
    1. Camidge D.R., Kim H.R., Ahn M.J., Yang J.C.H., Han J.Y., Hochmair M.J., Lee K.H., Delmonte A., García Campelo M.R., Kim D.W., et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol. 2020;38:3592–3603. doi: 10.1200/JCO.20.00505.
    1. Shaw A.T., Bauer T.M., de Marinis F., Felip E., Goto Y., Liu G., Mazieres J., Kim D.-W., Mok T., Polli A., et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020;383:2018–2029. doi: 10.1056/NEJMoa2027187.
    1. Shaw A.T., Ou S.-H.I., Bang Y.-J., Camidge D.R., Solomon B.J., Salgia R., Riely G.J., Varella-Garcia M., Shapiro G.I., Costa D.B., et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 2014;371:1963–1971. doi: 10.1056/NEJMoa1406766.
    1. Drilon A., Siena S., Dziadziuszko R., Barlesi F., Krebs M.G., Shaw A.T., de Braud F., Rolfo C., Ahn M.J., Wolf J., et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:261–270. doi: 10.1016/S1470-2045(19)30690-4.
    1. Planchard D., Besse B., Groen H.J.M., Hashemi S.M.S., Mazieres J., Kim T.M., Quoix E., Souquet P.J., Barlesi F., Baik C., et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022;17:103–115. doi: 10.1016/j.jtho.2021.08.011.
    1. Howlader N., Forjaz G., Mooradian M.J., Meza R., Kong C.Y., Cronin K.A., Mariotto A.B., Lowy D.R., Feuer E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020;383:640–649. doi: 10.1056/NEJMoa1916623.
    1. Farago A.F., Taylor M.S., Doebele R.C., Zhu V.W., Kummar S., Spira A.I., Boyle T.A., Haura E.B., Arcila M.E., Benayed R., et al. Clinicopathologic Features of Non–Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis. Oncol. 2018;2:1–12. doi: 10.1200/PO.18.00037.
    1. Rolfo C. NTRK gene fusions: A rough diamond ready to sparkle. Lancet Oncol. 2020;21:472–474. doi: 10.1016/S1470-2045(20)30026-7.
    1. Wang R., Hu H., Pan Y., Li Y., Ye T., Li C., Luo X., Wang L., Li H., Zhang Y., et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 2012;30:4352–4359. doi: 10.1200/JCO.2012.44.1477.
    1. Schrock A.B., Frampton G.M., Suh J., Chalmers Z.R., Rosenzweig M., Erlich R.L., Halmos B., Goldman J., Forde P., Leuenberger K., et al. Characterization of 298 patients with lung cancer harboring MET Exon 14 skipping alterations. J. Thorac. Oncol. 2016;11:1493–1502. doi: 10.1016/j.jtho.2016.06.004.
    1. Socinski M.A., Pennell N.A., Davies K.D. MET Exon 14 Skipping Mutations in Non–Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations. JCO Precis. Oncol. 2021;5:653–663. doi: 10.1200/PO.20.00516.
    1. Biernacka A., Tsongalis P.D., Peterson J.D., de Abreu F.B., Black C.C., Gutmann E.J., Liu X., Tafe L.J., Amos C.I., Tsongalis G.J. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 2016;209:195–198. doi: 10.1016/j.cancergen.2016.03.001.
    1. National Library of Medicine MET MET Proto-Oncogene, Receptor Tyrosine Kinase [Homo Sapiens (Human)]—Gene—NCBI. [(accessed on 7 June 2022)]; Available online: .
    1. Guo R., Luo J., Chang J., Rekhtman N., Arcila M., Drilon A. MET-Dependent Solid Tumors: Molecular Diagnosis and Targeted Therapy. Nat. Rev. Clin. Oncol. 2020;17:569. doi: 10.1038/s41571-020-0377-z.
    1. Go H., Jeon Y.K., Park H.J., Sung S.W., Seo J.W., Chung D.H. High MET Gene Copy Number Leads to Shorter Survival in Patients with Non-small Cell Lung Cancer. J. Thorac. Oncol. 2010;5:305–313. doi: 10.1097/JTO.0b013e3181ce3d1d.
    1. Bubendorf L., Dafni U., Schöbel M., Finn S.P., Tischler V., Sejda A., Marchetti A., Thunnissen E., Verbeken E.K., Warth A., et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: Results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer. 2017;111:143–149. doi: 10.1016/j.lungcan.2017.07.021.
    1. Bean J., Brennan C., Shih J.Y., Riely G., Viale A., Wang L., Chitale D., Motoi N., Szoke J., Broderick S., et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA. 2007;104:20932–20937. doi: 10.1073/pnas.0710370104.
    1. Casadevall D., Gimeno J., Clavé S., Taus Á., Pijuan L., Arumí M., Lorenzo M., Menéndez S., Cañadas I., Albanell J., et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC) Oncotarget. 2015;6:16215. doi: 10.18632/oncotarget.3976.
    1. Camidge D.R., Otterson G.A., Clark J.W., Ignatius Ou S.H., Weiss J., Ades S., Shapiro G.I., Socinski M.A., Murphy D.A., Conte U., et al. Crizotinib in Patients With MET-Amplified NSCLC. J. Thorac. Oncol. 2021;16:1017–1029. doi: 10.1016/j.jtho.2021.02.010.
    1. Noonan S.A., Berry L., Lu X., Gao D., Barón A.E., Chesnut P., Sheren J., Aisner D.L., Merrick D., Doebele R.C., et al. Identifying the Appropriate FISH Criteria for Defining MET Copy Number–Driven Lung Adenocarcinoma through Oncogene Overlap Analysis. J. Thorac. Oncol. 2016;11:1293–1304. doi: 10.1016/j.jtho.2016.04.033.
    1. Baltschukat S., Engstler B.S., Huang A., Hao H.X., Tam A., Wang H.Q., Liang J., DiMare M.T., Bhang H.E.C., Wang Y., et al. Capmatinib (INC280) is active against models of non–small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin. Cancer Res. 2019;25:3164–3175. doi: 10.1158/1078-0432.CCR-18-2814.
    1. Wolf J., Seto T., Han J.-Y., Reguart N., Garon E.B., Groen H.J.M., Tan D.S.W., Hida T., de Jonge M., Orlov S.V., et al. Capmatinib in MET Exon 14–Mutated or MET -Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020;383:944–957. doi: 10.1056/NEJMoa2002787.
    1. Camidge D.R., Otterson G.A., Clark J.W., Ou S.-H.I., Weiss J., Ades S., Conte U., Tang Y., Wang S.C.-E., Murphy D., et al. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): Updated safety and efficacy findings from a phase 1 trial. J. Clin. Oncol. 2018;36:9062. doi: 10.1200/JCO.2018.36.15_suppl.9062.
    1. Landi L., Chiari R., Tiseo M., D’Inca F., Dazzi C., Chella A., Delmonte A., Bonanno L., Giannarelli D., Cortinovis D.L., et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non–small cell lung cancer (METROS): A phase II, prospective, multicenter, two-arms trial. Clin. Cancer Res. 2019;25:7312–7319. doi: 10.1158/1078-0432.CCR-19-0994.
    1. Ma P.C. MET receptor juxtamembrane exon 14 alternative spliced variant: Novel cancer genomic predictive biomarker. Cancer Discov. 2015;5:802. doi: 10.1158/-15-0769.
    1. Peschard P., Fournier T.M., Lamorte L., Naujokas M.A., Band H., Langdon W.Y., Park M. Mutation of the c-Cbl TKB Domain Binding Site on the Met Receptor Tyrosine Kinase Converts It into a Transforming Protein. Mol. Cell. 2001;8:995–1004. doi: 10.1016/S1097-2765(01)00378-1.
    1. Awad M.M., Oxnard G.R., Jackman D.M., Savukoski D.O., Hall D., Shivdasani P., Heng J.C., Dahlberg S.E., Jänne P.A., Verma S., et al. MET exon 14 mutations in Non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J. Clin. Oncol. 2016;34:721–730. doi: 10.1200/JCO.2015.63.4600.
    1. Paik P.K., Felip E., Veillon R., Sakai H., Cortot A.B., Garassino M.C., Mazieres J., Viteri S., Senellart H., Van Meerbeeck J., et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020;383:931–943. doi: 10.1056/NEJMoa2004407.
    1. Mathieu L.N., Larkins E., Akinboro O., Roy P., Amatya A.K., Fiero M.H., Mishra-Kalyani P.S., Helms W.S., Myers C.E., Skinner A.M., et al. FDA Approval Summary: Capmatinib and Tepotinib for the Treatment of Metastatic NSCLC Harboring MET Exon 14 Skipping Mutations or Alterations. Clin. Cancer Res. 2022;28:249–254. doi: 10.1158/1078-0432.CCR-21-1566.
    1. European Medicines Agency Tepmetko. [(accessed on 4 June 2022)]; Available online: .
    1. European Medicines Agency Tabrecta: Pending EC Decision. [(accessed on 4 June 2022)]; Available online: .
    1. Lu S., Fang J., Li X., Cao L., Zhou J., Guo Q., Liang Z., Cheng Y., Jiang L., Yang N., et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med. 2021;9:1154–1164. doi: 10.1016/S2213-2600(21)00084-9.
    1. Camidge D.R., Janku F., Martinez-Bueno A., Catenacci D.V.T., Lee J., Lee S.-H., Dowlati A., Rohrberg K.S., Navarro A., Moon Y.W., et al. Safety and preliminary clinical activity of the MET antibody mixture, Sym015 in advanced non-small cell lung cancer (NSCLC) patients with MET amplification/exon 14 deletion (METAmp/Ex14∆) J. Clin. Oncol. 2020;38:9510. doi: 10.1200/JCO.2020.38.15_suppl.9510.
    1. Camidge D.R., Moiseenko F., Cicin I., Horinouchi H., Filippova E., Bar J., Lu S., Tomasini P., Ocampo C., Sullivan D., et al. Abstract CT179: Telisotuzumab vedotin (teliso-v) monotherapy in patients with previously treated c-Met+ advanced non-small cell lung cancer. Cancer Res. 2021;81:CT179. doi: 10.1158/1538-7445.AM2021-CT179.
    1. National Library of Medicine RET Ret Proto-Oncogene [Homo Sapiens (Human)]—Gene—NCBI. [(accessed on 7 June 2022)]; Available online: .
    1. Tan A.C., Lai G.G.Y., Tan G.S., Poon S.Y., Doble B., Lim T.H., Aung Z.W., Takano A., Tan W.L., Ang M.K., et al. Utility of incorporating next-generation sequencing (NGS) in an Asian non-small cell lung cancer (NSCLC) population: Incremental yield of actionable alterations and cost-effectiveness analysis. Lung Cancer. 2020;139:207–215. doi: 10.1016/j.lungcan.2019.11.022.
    1. Gautschi O., Milia J., Filleron T., Wolf J., Carbone D.P., Owen D., Camidge R., Narayanan V., Doebele R.C., Besse B., et al. Targeting RET in patients with RET-rearranged lung cancers: Results from the global, multicenter RET registry. J. Clin. Oncol. 2017;35:1403–1410. doi: 10.1200/JCO.2016.70.9352.
    1. Drilon A., Oxnard G.R., Tan D.S.W., Loong H.H.F., Johnson M., Gainor J., McCoach C.E., Gautschi O., Besse B., Cho B.C., et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020;383:813–824. doi: 10.1056/NEJMoa2005653.
    1. Gainor J.F., Curigliano G., Kim D.W., Lee D.H., Besse B., Baik C.S., Doebele R.C., Cassier P.A., Lopes G., Tan D.S.W., et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021;22:959–969. doi: 10.1016/S1470-2045(21)00247-3.
    1. U.S. Food & Drug Administration (FDA) [(accessed on 8 May 2022)];FDA Approves Selpercatinib for Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Available online: .
    1. U.S. Food & Drug Administration (FDA) [(accessed on 8 May 2022)];FDA Approves Pralsetinib for Lung Cancer with RET Gene Fusions. Available online: .
    1. European Medicines Agency Gavreto. [(accessed on 4 June 2022)]; Available online: .
    1. European Medicines Agency Retsevmo. [(accessed on 4 June 2022)]; Available online: .
    1. Drilon A.E., Zhai D., Rogers E., Deng W., Zhang X., Ung J., Lee D., Rodon L., Graber A., Zimmerman Z.F., et al. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J. Clin. Oncol. 2020;38:3616. doi: 10.1200/JCO.2020.38.15_suppl.3616.
    1. Schoffski P., Cho B.C., Italiano A., Loong H.H.F., Massard C., Rodriguez L.M., Shih J.-Y., Subbiah V., Verlingue L., Andreas K., et al. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-fusion+ NSCLC and RET-mutant MTC: Phase 1 study results. J. Clin. Oncol. 2021;39:3008. doi: 10.1200/JCO.2021.39.15_suppl.3008.
    1. Lin J.J., Liu S.V., McCoach C.E., Zhu V.W., Tan A.C., Yoda S., Peterson J., Do A., Prutisto-Chang K., Dagogo-Jack I., et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann. Oncol. 2020;31:1725–1733. doi: 10.1016/j.annonc.2020.09.015.
    1. Khotskaya Y.B., Holla V.R., Farago A.F., Mills Shaw K.R., Meric-Bernstam F., Hong D.S. Targeting TRK family proteins in cancer. Pharmacol. Ther. 2017;173:58–66. doi: 10.1016/j.pharmthera.2017.02.006.
    1. Vaishnavi A., Le A.T., Doebele R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25. doi: 10.1158/-14-0765.
    1. Amatu A., Sartore-Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1:e000023. doi: 10.1136/esmoopen-2015-000023.
    1. Haratake N., Seto T. NTRK Fusion-positive Non–small-cell Lung Cancer: The Diagnosis and Targeted Therapy. Clin. Lung Cancer. 2021;22:1–5. doi: 10.1016/j.cllc.2020.10.013.
    1. Boulle F., Kenis G., Cazorla M., Hamon M., Steinbusch H.W.M., Lanfumey L., van den Hove D.L.A. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog. Neurobiol. 2012;98:197–206. doi: 10.1016/j.pneurobio.2012.06.002.
    1. Cocco E., Scaltriti M., Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018;15:731–747. doi: 10.1038/s41571-018-0113-0.
    1. Passiglia F., Caparica R., Giovannetti E., Giallombardo M., Listi A., Diana P., Cirrincione G., Caglevic C., Raez L.E., Russo A., et al. The potential of neurotrophic tyrosine kinase (NTRK) inhibitors for treating lung cancer. Expert Opin. Investig. Drugs. 2016;25:385–392. doi: 10.1517/13543784.2016.1152261.
    1. Russo A., Lopes A.R., McCusker M.G., Garrigues S.G., Ricciardi G.R., Arensmeyer K.E., Scilla K.A., Mehra R., Rolfo C. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1) Curr. Oncol. Rep. 2020;22:48. doi: 10.1007/s11912-020-00909-8.
    1. Marchiò C., Scaltriti M., Ladanyi M., Iafrate A.J., Bibeau F., Dietel M., Hechtman J.F., Troiani T., López-Rios F., Douillard J.Y., et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 2019;30:1417–1427. doi: 10.1093/annonc/mdz204.
    1. Drilon A., Laetsch T.W., Kummar S., DuBois S.G., Lassen U.N., Demetri G.D., Nathenson M., Doebele R.C., Farago A.F., Pappo A.S., et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018;378:731. doi: 10.1056/NEJMoa1714448.
    1. European Medicines Agency Vitrakvi. [(accessed on 4 June 2022)]; Available online: .
    1. Hong D.S., DuBois S.G., Kummar S., Farago A.F., Albert C.M., Rohrberg K.S., van Tilburg C.M., Nagasubramanian R., Berlin J.D., Federman N., et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21:531–540. doi: 10.1016/S1470-2045(19)30856-3.
    1. Doebele R.C., Drilon A., Paz-Ares L., Siena S., Shaw A.T., Farago A.F., Blakely C.M., Seto T., Cho B.C., Tosi D., et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:271–282. doi: 10.1016/S1470-2045(19)30691-6.
    1. European Medicines Agency Rozlytrek. [(accessed on 4 June 2022)]; Available online: .
    1. Dziadziuszko R., Krebs M.G., de Braud F., Siena S., Drilon A., Doebele R.C., Patel M.R., Chul Cho B., Liu S.V., Ahn M.J., et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion–Positive Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2021;39:1253–1263. doi: 10.1200/JCO.20.03025.
    1. Ou S.H.I., Fujiwara Y., Shaw A.T., Yamamoto N., Nakagawa K., Fan F., Hao Y., Gao Y., Jänne P.A., Seto T. Efficacy of Taletrectinib (AB-106/DS-6051b) in ROS1+ NSCLC: An Updated Pooled Analysis of U.S. and Japan Phase 1 Studies. JTO Clin. Res. Rep. 2021;2:100108. doi: 10.1016/j.jtocrr.2020.100108.
    1. Zhou C., Fan H., Wang Y., Wu H., Yang N., Li K., Wang X., Qin X., Yu Q., Fang Y., et al. Taletrectinib (AB-106; DS-6051b) in metastatic non-small cell lung cancer (NSCLC) patients with ROS1 fusion: Preliminary results of TRUST. J. Clin. Oncol. 2021;39:9066. doi: 10.1200/JCO.2021.39.15_suppl.9066.
    1. Drilon A., Nagasubramanian R., Blake J.F., Ku N., Tuch B.B., Ebata K., Smith S., Lauriault V., Kolakowski G.R., Brandhuber B.J., et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior trk kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7:963–972. doi: 10.1158/-17-0507.
    1. Drilon A., Ou S.H.I., Cho B.C., Kim D.W., Lee J., Lin J.J., Zhu V.W., Ahn M.J., Camidge D.R., Nguyen J., et al. Repotrectinib (Tpx-0005) is a next-generation ros1/trk/alk inhibitor that potently inhibits ros1/trk/alk solvent-front mutations. Cancer Discov. 2018;8:1227–1236. doi: 10.1158/-18-0484.
    1. . Combating Acquired TRK Inhibitor Resistance. Cancer Discov. 2019;9:684–685. doi: 10.1158/-NB2019-047.
    1. Simanshu D.K., Nissley D.V., McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell. 2017;170:17–33. doi: 10.1016/j.cell.2017.06.009.
    1. Prior I.A., Hood F.E., Hartley J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020;80:2669–2974. doi: 10.1158/0008-5472.CAN-19-3682.
    1. Boch C., Kollmeier J., Roth A., Stephan-Falkenau S., Misch D., Grüning W., Bauer T.T., Mairinger T. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): Routine screening data for central Europe from a cohort study. BMJ Open. 2013;3:e002560. doi: 10.1136/bmjopen-2013-002560.
    1. Martin P., Leighl N.B., Tsao M.S., Shepherd F.A. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J. Thorac. Oncol. 2013;8:530–542. doi: 10.1097/JTO.0b013e318283d958.
    1. Adderley H., Blackhall F.H., Lindsay C.R. KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine. 2019;41:711–716. doi: 10.1016/j.ebiom.2019.02.049.
    1. Dogan S., Shen R., Ang D.C., Johnson M.L., D’Angelo S.P., Paik P.K., Brzostowski E.B., Riely G.J., Kris M.G., Zakowski M.F., et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: Higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin. Cancer Res. 2012;18:6169–6177. doi: 10.1158/1078-0432.CCR-11-3265.
    1. Canon J., Rex K., Saiki A.Y., Mohr C., Cooke K., Bagal D., Gaida K., Holt T., Knutson C.G., Koppada N., et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–223. doi: 10.1038/s41586-019-1694-1.
    1. Skoulidis F., Li B.T., Dy G.K., Price T.J., Falchook G.S., Wolf J., Italiano A., Schuler M., Borghaei H., Barlesi F., et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021;384:2371–2381. doi: 10.1056/NEJMoa2103695.
    1. European Medicines Agency Lumykras. [(accessed on 4 June 2022)]; Available online: .
    1. Hallin J., Engstrom L.D., Hargi L., Calinisan A., Aranda R., Briere D.M., Sudhakar N., Bowcut V., Baer B.R., Ballard J.A., et al. The KRAS G12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2020;10:54–71. doi: 10.1158/-19-1167.
    1. Ou S.-H.I., Jänne P.A., Leal T.A., Rybkin I.I., Sabari J.K., Barve M.A., Bazhenova L., Johnson M.L., Velastegui K.L., Cilliers C., et al. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients With Advanced KRASG12C Solid Tumors (KRYSTAL-1) J. Clin. Oncol. 2022:JCO-21. doi: 10.1200/JCO.21.02752.
    1. Jänne P.A., Riely G.J., Gadgeel S.M., Heist R.S., Ou S.-H.I., Pacheco J.M., Johnson M.L., Sabari J.K., Leventakos K., Yau E., et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N. Engl. J. Med. 2022 doi: 10.1056/NEJMoa2204619.
    1. Cision PR Newswire Mirati Therapeutics Submits Marketing Authorization Application to the European Medicines Agency for Investigational Adagrasib as a Treatment for Previously-Treated KRASG12C-mutated Non-Small Cell Lung Cancer. [(accessed on 4 June 2022)]. Available online: .
    1. National Library of Medicine ERBB2 erb-b2 Receptor Tyrosine Kinase 2 [Homo Sapiens (Human)]—Gene—NCBI. [(accessed on 7 May 2022)]; Available online: .
    1. Wang J., Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther. 2019;4:34. doi: 10.1038/s41392-019-0069-2.
    1. Gambardella V., Fleitas T., Tarazona N., Cejalvo J.M., Gimeno-Valiente F., Martinez-Ciarpaglini C., Huerta M., Roselló S., Castillo J., Roda D., et al. Towards precision oncology for HER2 blockade in gastroesophageal adenocarcinoma. Ann. Oncol. 2019;30:1254–1264. doi: 10.1093/annonc/mdz143.
    1. Smyth E.C., Nilsson M., Grabsch H.I., van Grieken N.C., Lordick F. Gastric cancer. Lancet. 2020;396:635–648. doi: 10.1016/S0140-6736(20)31288-5.
    1. Lara P.N., Laptalo L., Longmate J., Lau D.H.M., Gandour-Edwards R., Gumerlock P.H., Doroshow J.H., Gandara D.R. Trastuzumab plus Docetaxel in HER2/neu–Positive Non–Small-Cell Lung Cancer: A California Cancer Consortium Screening and Phase II Trial. Clin. Lung Cancer. 2004;5:231–236. doi: 10.3816/CLC.2004.n.004.
    1. Zinner R.G., Glisson B.S., Fossella F.V., Pisters K.M.W., Kies M.S., Lee P.M., Massarelli E., Sabloff B., Fritsche H.A., Ro J.Y., et al. Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: Report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer. 2004;44:99–110. doi: 10.1016/J.LUNGCAN.2003.09.026.
    1. Krug L.M., Miller V.A., Patel J., Crapanzano J., Azzoli C.G., Gomez J., Kris M.G., Heelan R.T., Pizzo B., Tyson L., et al. Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced nonsmall cell lung carcinoma. Cancer. 2005;104:2149–2155. doi: 10.1002/cncr.21428.
    1. Hotta K., Aoe K., Kozuki T., Ohashi K., Ninomiya K., Ichihara E., Kubo T., Ninomiya T., Chikamori K., Harada D., et al. A Phase II Study of Trastuzumab Emtansine in HER2-Positive Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018;13:273–279. doi: 10.1016/j.jtho.2017.10.032.
    1. Peters S., Stahel R., Bubendorf L., Bonomi P., Villegas A., Kowalski D.M., Baik C.S., Isla D., De Castro Carpeno J., Garrido P., et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin. Cancer Res. 2019;25:64–72. doi: 10.1158/1078-0432.CCR-18-1590.
    1. Stephens P., Hunter C., Bignell G., Edkins S., Davies H., Teague J., Stevens C., O’Meara S., Smith R., Parker A., et al. Intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431:525–526. doi: 10.1038/431525b.
    1. Li B.T., Shen R., Buonocore D., Olah Z.T., Ni A., Ginsberg M.S., Ulaner G.A., Offin M., Feldman D., Hembrough T., et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: Results from a phase II basket trial. J. Clin. Oncol. 2018;36:2532–2537. doi: 10.1200/JCO.2018.77.9777.
    1. Li B.T., Smit E.F., Goto Y., Nakagawa K., Udagawa H., Mazières J., Nagasaka M., Bazhenova L., Saltos A.N., Felip E., et al. Trastuzumab Deruxtecan in HER2 -Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022;386:241–251. doi: 10.1056/NEJMoa2112431.
    1. Nakagawa K., Nagasaka M., Felip E., Pacheco J., Baik C., Goto Y., Saltos A., Li B., Udagawa H., Gadgeel S., et al. OA04.05 Trastuzumab Deruxtecan in HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Interim Results of DESTINY-Lung01. J. Thorac. Oncol. 2021;16:S109–S110. doi: 10.1016/j.jtho.2021.01.285.
    1. Lai W.V., Lebas L., Barnes T.A., Milia J., Ni A., Gautschi O., Peters S., Ferrara R., Plodkowski A.J., Kavanagh J., et al. Afatinib in patients with metastatic or recurrent HER2-mutant lung cancers: A retrospective international multicentre study. Eur. J. Cancer. 2019;109:28–35. doi: 10.1016/j.ejca.2018.11.030.
    1. Peters S., Curioni-Fontecedro A., Nechushtan H., Shih J.Y., Liao W.Y., Gautschi O., Spataro V., Unk M., Chih-Hsin Yang J., Lorence R.M., et al. Activity of Afatinib in Heavily Pretreated Patients With ERBB2 Mutation-Positive Advanced NSCLC: Findings From a Global Named Patient Use Program. J. Thorac. Oncol. 2018;13:1897–1905. doi: 10.1016/j.jtho.2018.07.093.
    1. De Grève J., Moran T., Graas M.P., Galdermans D., Vuylsteke P., Canon J.L., Schallier D., Decoster L., Teugels E., Massey D., et al. Phase II study of afatinib, an irreversible ErbB family blocker, in demographically and genotypically defined lung adenocarcinoma. Lung Cancer. 2015;88:63–69. doi: 10.1016/j.lungcan.2015.01.013.
    1. Dziadziuszko R., Smit E.F., Dafni U., Wolf J., Wasąg B., Biernat W., Finn S.P., Kammler R., Tsourti Z., Rabaglio M., et al. Afatinib in NSCLC With HER2 Mutations: Results of the Prospective, Open-Label Phase II NICHE Trial of European Thoracic Oncology Platform (ETOP) J. Thorac. Oncol. 2019;14:1086–1094. doi: 10.1016/j.jtho.2019.02.017.
    1. Kris M.G., Camidge D.R., Giaccone G., Hida T., Li B.T., O’Connell J., Taylor I., Zhang H., Arcila M.E., Goldberg Z., et al. Targeting HER2 aberrations as actionable drivers in lung cancers: Phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015;26:1421–1427. doi: 10.1093/annonc/mdv186.
    1. Mazéres J., Barlesi F., Filleron T., Besse B., Monnet I., Beau-Faller M., Peters S., Dansin E., Früh M., Pless M., et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: Results from the European EUHER2 cohort. Ann. Oncol. 2016;27:281–286. doi: 10.1093/annonc/mdv573.
    1. Elamin Y.Y., Robichaux J.P., Carter B.W., Altan M., Gibbons D.L., Fossella F.V., Lam V.K., Patel A.B., Negrao M.V., Le X., et al. Poziotinib for Patients With HER2 Exon 20 Mutant Non–Small-Cell Lung Cancer: Results From a Phase II Trial. J. Clin. Oncol. 2022;40:702–709. doi: 10.1200/JCO.21.01113.
    1. Le X., Cornelissen R., Garassino M., Clarke J.M., Tchekmedyian N., Goldman J.W., Leu S.Y., Bhat G., Lebel F., Heymach J.V., et al. Poziotinib in Non-Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. 2022;40:710–718. doi: 10.1200/JCO.21.01323.
    1. Zhou C., Ramalingam S.S., Kim T.M., Kim S.W., Yang J.C., Riely G.J., Mekhail T., Nguyen D., Garcia Campelo M.R., Felip E., et al. Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial. JAMA Oncol. 2021;7:e214761. doi: 10.1001/jamaoncol.2021.4761. Erratum in JAMA Oncol. 2022.
    1. Wang Y., Jiang T., Qin Z., Jiang J., Wang Q., Yang S., Rivard C., Gao G., Ng T.L., Tu M.M., et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019;30:447–455. doi: 10.1093/annonc/mdy542.
    1. Zhou C., Li X., Wang Q., Gao G., Zhang Y., Chen J., Shu Y., Hu Y., Fan Y., Fang J., et al. Pyrotinib in HER2-Mutant Advanced Lung Adenocarcinoma After Platinum-Based Chemotherapy: A Multicenter, Open-Label, Single-Arm, Phase II Study. J. Clin. Oncol. 2020;38:2753–2761. doi: 10.1200/JCO.20.00297.
    1. Li B., Offin M., Hembrough T., Cecchi F., Shen R., Olah Z., Panora E., Myers M., Brzostowski E., Buonocore D., et al. P1.13-44 Safety, PK, and Preliminary Antitumor Activity of the Oral EGFR/HER2 Exon 20 Inhibitor TAK-788 in NSCLC. J. Thorac. Oncol. 2018;13:S599. doi: 10.1016/j.jtho.2018.08.900.
    1. Sequist L.V., Waltman B.A., Dias-Santagata D., Digumarthy S., Turke A.B., Fidias P., Bergethon K., Shaw A.T., Gettinger S., Cosper A.K., et al. Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors. Sci. Transl. Med. 2011;3:75ra26. doi: 10.1126/scitranslmed.3002003.
    1. Engelman J.A., Zejnullahu K., Mitsudomi T., Song Y., Hyland C., Joon O.P., Lindeman N., Gale C.M., Zhao X., Christensen J., et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–1043. doi: 10.1126/science.1141478.
    1. Sequist L.V., Han J.Y., Ahn M.J., Cho B.C., Yu H., Kim S.W., Yang J.C.H., Lee J.S., Su W.C., Kowalski D., et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21:373–386. doi: 10.1016/S1470-2045(19)30785-5.
    1. Wu Y.L., Cheng Y., Zhou J., Lu S., Zhang Y., Zhao J., Kim D.W., Soo R.A., Kim S.W., Pan H., et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med. 2020;8:1132–1143. doi: 10.1016/S2213-2600(20)30154-5.
    1. McCoach C.E., Yu A., Gandara D.R., Riess J.W., Vang D.P., Li T., Lara P.N., Gubens M., Lara F., Mack P.C., et al. Phase I/II Study of Capmatinib Plus Erlotinib in Patients With MET-Positive Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2021;1:177–190. doi: 10.1200/PO.20.00279.
    1. Wu Y.L., Zhang L., Kim D.W., Liu X., Lee D.H., Yang J.C.H., Ahn M.J., Vansteenkiste J.F., Su W.C., Felip E., et al. Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib After Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients With EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018;36:3101–3109. doi: 10.1200/JCO.2018.77.7326.
    1. Mok T.S.K., Cortinovis D.L., Majem M., Johnson M.L., Mardjuadi F.I., Zhao X., Siripurapu S.V., Jiang Z., Wolf J. Efficacy and safety of capmatinib plus pembrolizumab in treatment (tx)-naïve patients with advanced non–small cell lung cancer (NSCLC) with high tumor PD-L1 expression: Results of a randomized, open-label, multicenter, phase 2 study. J. Clin. Oncol. 2022;40:9118. doi: 10.1200/JCO.2022.40.16_suppl.9118.
    1. Briere D.M., Li S., Calinisan A., Sudhakar N., Aranda R., Hargis L., Peng D.H., Deng J., Engstrom L.D., Hallin J., et al. The KRAS G12C Inhibitor MRTX849 Reconditions the Tumor Immune Microenvironment and Sensitizes Tumors to Checkpoint Inhibitor Therapy. Mol. Cancer Ther. 2021;20:975–985. doi: 10.1158/1535-7163.MCT-20-0462.
    1. Wallrabenstein T., Del Rio J., Templeton A.J., Buess M. Much has changed in the last decade except overall survival: A Swiss single center analysis of treatment and survival in patients with stage IV non-small cell lung cancer. PLoS ONE. 2020;15:e0233768. doi: 10.1371/journal.pone.0233768.
    1. Spini A., Gini R., Rosellini P., Singier A., Bellan C., Pascucci A., Leoncini L., Mathieu C., Martellucci I., Furiesi F., et al. First-Line Pharmacotherapies and Survival among Patients Diagnosed with Non-Resectable NSCLC: A Real-Life Setting Study with Gender Prospective. Cancers. 2021;13:6129. doi: 10.3390/cancers13236129.
    1. Malone E.R., Oliva M., Sabatini P.J.B., Stockley T.L., Siu L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:8. doi: 10.1186/s13073-019-0703-1.
    1. Kerr K.M., Bubendorf L., Edelman M.J., Marchetti A., Mok T., Novello S., O’Byrne K., Stahel R., Peters S., Felip E., et al. Second ESMO consensus conference on lung cancer: Pathology and molecular biomarkers for non-small-cell lung cancer. Ann. Oncol. 2014;25:1681–1690. doi: 10.1093/annonc/mdu145.
    1. Joshi A., Zanwar S., Noronha V., Patil V.M., Chougule A., Kumar R., Janu A., Mahajan A., Kapoor A., Prabhash K. EGFR mutation in squamous cell carcinoma of the lung: Does it carry the same connotation as in adenocarcinomas? Onco. Targets. Ther. 2017;10:1859. doi: 10.2147/OTT.S125397.
    1. Hammerman P.S., Voet D., Lawrence M.S., Voet D., Jing R., Cibulskis K., Sivachenko A., Stojanov P., McKenna A., Lander E.S., et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–525. doi: 10.1038/nature11404.
    1. Rekhtman N., Paik P.K., Arcila M.E., Tafe L.J., Oxnard G.R., Moreira A.L., Travis W.D., Zakowski M.F., Kris M.G., Ladanyi M. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: Lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin. Cancer Res. 2012;18:1167–1176. doi: 10.1158/1078-0432.CCR-11-2109.
    1. Kenmotsu H., Serizawa M., Koh Y., Isaka M., Takahashi T., Taira T., Ono A., Maniwa T., Takahashi S., Mori K., et al. Prospective genetic profiling of squamous cell lung cancer and adenosquamous carcinoma in Japanese patients by multitarget assays. BMC Cancer. 2014;14:786. doi: 10.1186/1471-2407-14-786.
    1. Zhao W., Choi Y.L., Song J.Y., Zhu Y., Xu Q., Zhang F., Jiang L., Cheng J., Zheng G., Mao M. ALK, ROS1 and RET rearrangements in lung squamous cell carcinoma are very rare. Lung Cancer. 2016;94:22–27. doi: 10.1016/j.lungcan.2016.01.011.
    1. Sheikine Y., Pavlick D., Klempner S.J., Trabucco S.E., Chung J.H., Rosenzweig M., Wang K., Velcheti V., Frampton G.M., Peled N., et al. BRAF in Lung Cancers: Analysis of Patient Cases Reveals Recurrent BRAF Mutations, Fusions, Kinase Duplications, and Concurrent Alterations. JCO Precis. Oncol. 2018;2:1–15. doi: 10.1200/PO.17.00172.
    1. Lam V.K., Tran H.T., Banks K.C., Lanman R.B., Rinsurongkawong W., Peled N., Lewis J., Lee J.J., Roth J., Roarty E.B., et al. Targeted Tissue and Cell-Free Tumor DNA Sequencing of Advanced Lung Squamous-Cell Carcinoma Reveals Clinically Significant Prevalence of Actionable Alterations. Clin. Lung Cancer. 2019;20:30–36.e3. doi: 10.1016/j.cllc.2018.08.020.
    1. Campbell J.D., Alexandrov A., Kim J., Wala J., Berger A.H., Pedamallu C.S., Shukla S.A., Guo G., Brooks A.N., Murray B.A., et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016;48:607–616. doi: 10.1038/ng.3564.
    1. Vuong H.G., Ho A.T.N., Altibi A.M.A., Nakazawa T., Katoh R., Kondo T. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—A systematic review and meta-analysis. Lung Cancer. 2018;123:76–82. doi: 10.1016/j.lungcan.2018.07.006.
    1. Lee G.D., Lee S.E., Oh D.Y., Yu D.B., Jeong H.M., Kim J., Hong S., Jung H.S., Oh E., Song J.Y., et al. MET Exon 14 Skipping Mutations in Lung Adenocarcinoma: Clinicopathologic Implications and Prognostic Values. J. Thorac. Oncol. 2017;12:1233–1246. doi: 10.1016/j.jtho.2017.04.031.
    1. Cappuzzo F., Jänne P., Skokan M., Finocchiaro G., Rossi E., Ligorio C., Zucali P., Terracciano L., Toschi L., Roncalli M., et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann. Oncol. 2008;20:298–304. doi: 10.1093/annonc/mdn635.
    1. Pillai R.N., Behera M., Berry L.D., Rossi M.R., Kris M.G., Johnson B.E., Bunn P.A., Ramalingam S.S., Khuri F.R. HER2 Mutations in Lung Adenocarcinomas: A Report from the Lung Cancer Mutation Consortium. Cancer. 2017;123:4099. doi: 10.1002/cncr.30869.
    1. Ricciardi G.R.R., Russo A., Franchina T., Ferraro G., Zanghì M., Picone A., Scimone A., Adamo V. NSCLC and HER2: Between Lights and Shadows. J. Thorac. Oncol. 2014;9:1750–1762. doi: 10.1097/JTO.0000000000000379.
    1. Yu X., Ji X., Su C. HER2-Altered Non-Small Cell Lung Cancer: Biology, Clinicopathologic Features, and Emerging Therapies. Front. Oncol. 2022;12:860313. doi: 10.3389/fonc.2022.860313.
    1. Ninomiya K., Hata T., Yoshioka H., Ohashi K., Bessho A., Hosokawa S., Ishikawa N., Yamasaki M., Shibayama T., Aoe K., et al. A Prospective Cohort Study to Define the Clinical Features and Outcome of Lung Cancers Harboring HER2 Aberration in Japan (HER2-CS STUDY) Chest. 2019;156:357–366. doi: 10.1016/j.chest.2019.01.011.
    1. Lin C., Wang S., Xie W., Chang J., Gan Y. The RET fusion gene and its correlation with demographic and clinicopathological features of non-small cell lung cancer: A meta-analysis. Cancer Biol. Ther. 2015;16:1019–1028. doi: 10.1080/15384047.2015.1046649.
    1. Michels S., Scheel A.H., Scheffler M., Schultheis A.M., Gautschi O., Aebersold F., Diebold J., Pall G., Rothschild S., Bubendorf L., et al. Clinicopathological Characteristics of RET Rearranged Lung Cancer in European Patients. J. Thorac. Oncol. 2016;11:122–127. doi: 10.1016/j.jtho.2015.09.016.
    1. Sabari J.K., Leonardi G.C., Shu C.A., Umeton R., Montecalvo J., Ni A., Chen R., Dienstag J., Mrad C., Bergagnini I., et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018;29:2085–2091. doi: 10.1093/annonc/mdy334.
    1. Reis H., Metzenmacher M., Goetz M., Savvidou N., Darwiche K., Aigner C., Herold T., Eberhardt W.E., Skiba C., Hense J., et al. MET Expression in Advanced Non-Small-Cell Lung Cancer: Effect on Clinical Outcomes of Chemotherapy, Targeted Therapy, and Immunotherapy. Clin. Lung Cancer. 2018;19:e441–e463. doi: 10.1016/j.cllc.2018.03.010.
    1. Hegde A., Andreev-Drakhlin A.Y., Roszik J., Huang L., Liu S., Hess K., Cabanillas M., Hu M.I., Busaidy N.L., Sherman S.I., et al. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open. 2020;5:e000799. doi: 10.1136/esmoopen-2020-000799.
    1. Mazieres J., Drilon A., Lusque A., Mhanna L., Cortot A.B., Mezquita L., Thai A.A., Mascaux C., Couraud S., Veillon R., et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019;30:1321–1328. doi: 10.1093/annonc/mdz167.
    1. Skoulidis F., Goldberg M.E., Greenawalt D.M., Hellmann M.D., Awad M.M., Gainor J.F., Schrock A.B., Hartmaier R.J., Trabucco S.E., Gay L., et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018;8:822–835. doi: 10.1158/-18-0099.
    1. Soria J.-C., Ohe Y., Vansteenkiste J., Reungwetwattana T., Chewaskulyong B., Lee K.H., Dechaphunkul A., Imamura F., Nogami N., Kurata T., et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;378:113–125. doi: 10.1056/NEJMoa1713137.
    1. Peters S., Camidge D.R., Shaw A.T., Gadgeel S., Ahn J.S., Kim D.-W., Ou S.-H.I., Pérol M., Dziadziuszko R., Rosell R., et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017;377:829–838. doi: 10.1056/NEJMoa1704795.
    1. Ramalingam S.S., Cheng Y., Zhou Z., Ohe Y., Imamura F., Cho B.C., Lin M.-C., Majem M., Shah R., Rukazenkov Y., et al. Mechanisms of Acquired Resistance to First-Line Osimertinib: Preliminary Data from the Phase III FLAURA Study. [(accessed on 8 May 2022)]. Available online: .

Source: PubMed

3
Předplatit