Palmitoylethanolamide and Its Biobehavioral Correlates in Autism Spectrum Disorder: A Systematic Review of Human and Animal Evidence

Marco Colizzi, Riccardo Bortoletto, Rosalia Costa, Leonardo Zoccante, Marco Colizzi, Riccardo Bortoletto, Rosalia Costa, Leonardo Zoccante

Abstract

Autism spectrum disorder (ASD) pathophysiology is not completely understood; however, altered inflammatory response and glutamate signaling have been reported, leading to the investigation of molecules targeting the immune-glutamatergic system in ASD treatment. Palmitoylethanolamide (PEA) is a naturally occurring saturated N-acylethanolamine that has proven to be effective in controlling inflammation, depression, epilepsy, and pain, possibly through a neuroprotective role against glutamate toxicity. Here, we systematically reviewed all human and animal studies examining PEA and its biobehavioral correlates in ASD. Studies indicate altered serum/brain levels of PEA and other endocannabinoids (ECBs)/acylethanolamines (AEs) in ASD. Altered PEA signaling response to social exposure and altered expression/activity of enzymes responsible for the synthesis and catalysis of ECBs/AEs, as well as downregulation of the peroxisome proliferator activated receptor-α (PPAR-α) and cannabinoid receptor target GPR55 mRNA brain expression, have been reported. Stress and exposure to exogenous cannabinoids may modulate ECBs/AEs levels and expression of candidate genes for neuropsychiatric disorders, with implications for ASD. Limited research suggests that PEA supplementation reduces overall autism severity by improving language and social and nonsocial behaviors. Potential neurobiological underpinnings include modulation of immune response, neuroinflammation, neurotrophy, apoptosis, neurogenesis, neuroplasticity, neurodegeneration, mitochondrial function, and microbiota activity, possibly through peroxisome proliferator-activated receptor-α (PPAR-α) activation.

Keywords: acylethanolamines; cannabinoids; child and adolescent neuropsychiatry; glutamate; immune response; inflammation; neurodevelopment; peroxisome proliferator-activated receptor-α; pervasive developmental disorder.

Conflict of interest statement

M.C. has been a consultant/advisor to GW Pharma Limited outside of this work. All the other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flowchart of search strategy for systematic review.

References

    1. Saghazadeh A., Ahangari N., Hendi K., Saleh F., Rezaei N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci. 2017;28:783–809. doi: 10.1515/revneuro-2017-0015.
    1. First M.B., Williams J.B.W., Karg R.S., Spitzer R.L. Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV) American Psychiatric Association; Arlington, VA, USA: 2015.
    1. Zeng K., Kang J., Ouyang G., Li J., Han J., Wang Y., Sokhadze E.M., Casanova M.F., Li X. Disrupted Brain Network in Children with Autism Spectrum Disorder. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-16440-z.
    1. Kern J.K., Geier D.A., King P.G., Sykes L.K., Mehta J.A., Geier M.R. Shared Brain Connectivity Issues, Symptoms, and Comorbidities in Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder, and Tourette Syndrome. Brain Connect. 2015;5:321–335. doi: 10.1089/brain.2014.0324.
    1. Lukito S., Norman L., Carlisi C., Radua J., Hart H., Simonoff E., Rubia K. Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychol. Med. 2020;50:894–919. doi: 10.1017/S0033291720000574.
    1. Dewey D. What Is Comorbidity and Why Does It Matter in Neurodevelopmental Disorders? Curr. Dev. Disord. Rep. 2018;5:235–242. doi: 10.1007/s40474-018-0152-3.
    1. Masi A., Quintana D.S., Glozier N., Lloyd A.R., Hickie I.B., Guastella A.J. Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Mol. Psychiatry. 2014;20:440–446. doi: 10.1038/mp.2014.59.
    1. Purcell A.E., Jeon O.H., Zimmerman A.W., Blue M.E., Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001;57:1618–1628. doi: 10.1212/WNL.57.9.1618.
    1. Shimmura C., Suda S., Tsuchiya K.J., Hashimoto K., Ohno K., Matsuzaki H., Iwata K., Matsumoto K., Wakuda T., Kameno Y., et al. Alteration of Plasma Glutamate and Glutamine Levels in Children with High-Functioning Autism. PLoS ONE. 2011;6:e25340. doi: 10.1371/journal.pone.0025340.
    1. Shinohe A., Hashimoto K., Nakamura K., Tsujii M., Iwata Y., Tsuchiya K.J., Sekine Y., Suda S., Suzuki K., Sugihara G.-I., et al. Increased serum levels of glutamate in adult patients with autism. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2006;30:1472–1477. doi: 10.1016/j.pnpbp.2006.06.013.
    1. Blaylock R.L., Strunecka A. Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr. Med. Chem. 2009;16:157–170. doi: 10.2174/092986709787002745.
    1. Walter L., Stella N. Cannabinoids and neuroinflammation. Br. J. Pharmacol. 2004;141:775–785. doi: 10.1038/sj.bjp.0705667.
    1. Colizzi M., McGuire P., Pertwee R.G., Bhattacharyya S. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neurosci. Biobehav. Rev. 2016;64:359–381. doi: 10.1016/j.neubiorev.2016.03.010.
    1. Colizzi M., Ruggeri M., Bhattacharyya S. Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Front. Psychol. 2020;11:833. doi: 10.3389/fpsyg.2020.00833.
    1. Freitas H.R., Isaac A.R., Malcher-Lopes R., Diaz B.L., Trevenzoli I.H., Reis R.A.D.M. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr. Neurosci. 2017;21:695–714. doi: 10.1080/1028415X.2017.1347373.
    1. Aran A., Harel M., Cassuto H., Polyansky L., Schnapp A., Wattad N., Shmueli D., Golan D., Castellanos F.X. Cannabinoid treatment for autism: A proof-of-concept randomized trial. Mol. Autism. 2021;12:1–11. doi: 10.1186/s13229-021-00420-2.
    1. Tsuboi K., Uyama T., Okamoto Y., Ueda N. Endocannabinoids and related N-acylethanolamines: Biological activities and metabolism. Inflamm. Regen. 2018;38:1–10. doi: 10.1186/s41232-018-0086-5.
    1. Rankin L., Fowler C.J. The basal pharmacology of palmitoylethanolamide. Int. J. Mol. Sci. 2020;21:7942. doi: 10.3390/ijms21217942.
    1. Solorzano C., Zhu C., Battista N., Astarita G., Lodola A., Rivara S., Mor M., Russo R., Maccarrone M., Antonietti F., et al. Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc. Natl. Acad. Sci. USA. 2009;106:20966–20971. doi: 10.1073/pnas.0907417106.
    1. Verme J.L., Fu J., Astarita G., La Rana G., Russo R., Calignano A., Piomelli D. The nuclear receptor peroxisome proliferator-activated receptor-α mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 2005;67:15–19. doi: 10.1124/mol.104.006353.
    1. Yu H.-L., Deng X.-Q., Li Y.-J., Quan Z.-S., Sun X.-Y., Li Y.-C. Short communication–N-palmitoylethanolamide, an endocannabinoid, exhibits antidepressant effects in the forced swim test and the tail suspension test in mice. Pharmacol. Rep. 2011;63:834–839. doi: 10.1016/S1734-1140(11)70596-5.
    1. Lambert D.M., Vandevoorde S., Diependaele G., Govaerts S.J., Robert A.R. Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia. 2002;42:321–327. doi: 10.1046/j.1528-1157.2001.41499.x.
    1. Jaggar S.I., Hasnie F.S., Sellaturay S., Rice A.S. The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain. 1998;76:189–199. doi: 10.1016/S0304-3959(98)00041-4.
    1. West S., King V., Carey T.S., Lohr K.N., McKoy N., Sutton S.F., Lux L. Systems to rate the strength of scientific evidence. Évid. Rep. Assess. 2002;47:1–11.
    1. Antonucci N., Cirillo A., Siniscalco D. Beneficial Effects of Palmitoylethanolamide on Expressive Language, Cognition, and Behaviors in Autism: A Report of Two Cases. Case Rep. Psychiatry. 2015;2015:1–6. doi: 10.1155/2015/325061.
    1. Bertolino B., Crupi R., Impellizzeri D., Bruschetta G., Cordaro M., Siracusa R., Esposito E., Cuzzocrea S. Beneficial Effects of Co-Ultramicronized Palmitoylethanolamide/Luteolin in a Mouse Model of Autism and in a Case Report of Autism. CNS Neurosci. Ther. 2016;23:87–98. doi: 10.1111/cns.12648.
    1. Khalaj M., Saghazadeh A., Shirazi E., Shalbafan M.-R., Alavi K., Shooshtari M.H., Laksari F.Y., Hosseini M., Mohammadi M.-R., Akhondzadeh S. Palmitoylethanolamide as adjunctive therapy for autism: Efficacy and safety results from a randomized controlled trial. J. Psychiatr. Res. 2018;103:104–111. doi: 10.1016/j.jpsychires.2018.04.022.
    1. Aran A., Eylon M., Harel M., Polianski L., Nemirovski A., Tepper S., Schnapp A., Cassuto H., Wattad N., Tam J. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol. Autism. 2019;10:1–11. doi: 10.1186/s13229-019-0256-6.
    1. Cristiano C., Pirozzi C., Coretti L., Cavaliere G., Lama A., Russo R., Lembo F., Mollica M.P., Meli R., Calignano A., et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav. Immun. 2018;74:166–175. doi: 10.1016/j.bbi.2018.09.003.
    1. Herrera M.I., Udovin L.D., Toro-Urrego N., Kusnier C.F., Luaces J.P., Capani F. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain. Front. Neurosci. 2018;12:145. doi: 10.3389/fnins.2018.00145.
    1. Udovin L.D., Kobiec T., Herrera M.I., Toro-Urrego N., Kusnier C.F., Kölliker-Frers R.A., Ramos-Hryb A.B., Luaces J.P., Otero-Losada M., Capani F. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front. Neurosci. 2020;13:1345. doi: 10.3389/fnins.2019.01345.
    1. Kerr D., Downey L., Conboy M., Finn D., Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav. Brain Res. 2013;249:124–132. doi: 10.1016/j.bbr.2013.04.043.
    1. Blanco E., Galeano P., Holubiec M.I., Romero J.I., Logica T., Rivera P., Pavón F.J., Suarez J., Capani F., De Fonseca F.R. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front. Neuroanat. 2015;9:141. doi: 10.3389/fnana.2015.00141.
    1. Tomas-Roig J., Piscitelli F., Gil V., Quintana E., Ramió-Torrentà L.L., Del Río J.A., Moore T.P., Agbemenyah H., Salinas G., Pommerenke C., et al. Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: Implications for neuropsychiatric disorders. CNS Neurosci. Ther. 2018;24:528–538. doi: 10.1111/cns.12810.
    1. Savino R., Carotenuto M., Polito A.N., Di Noia S., Albenzio M., Scarinci A., Ambrosi A., Sessa F., Tartaglia N., Messina G. Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain Sci. 2020;10:631. doi: 10.3390/brainsci10090631.
    1. Wójtowicz S., Strosznajder J.B., Jeżyna M. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem. Res. 2020;45:972–988. doi: 10.1007/s11064-020-02993-5.
    1. Hay I., Hynes K.L., Burgess J.R. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. Nutrients. 2019;11:1974. doi: 10.3390/nu11091974.
    1. Li D., Karnath H.-O., Xu X. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci. Bull. 2017;33:219–237. doi: 10.1007/s12264-017-0118-1.
    1. Siafis S., Çıray O., Schneider-Thoma J., Bighelli I., Krause M., Rodolico A., Ceraso A., Deste G., Huhn M., Fraguas D., et al. Placebo response in pharmacological and dietary supplement trials of autism spectrum disorder (ASD): Systematic review and meta-regression analysis. Mol. Autism. 2020;11:1–19. doi: 10.1186/s13229-020-00372-z.

Source: PubMed

3
Předplatit