Is It Time to Test the Antiseizure Potential of Palmitoylethanolamide in Human Studies? A Systematic Review of Preclinical Evidence

Riccardo Bortoletto, Matteo Balestrieri, Sagnik Bhattacharyya, Marco Colizzi, Riccardo Bortoletto, Matteo Balestrieri, Sagnik Bhattacharyya, Marco Colizzi

Abstract

Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA's role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.

Keywords: acylethanolamines; cannabinoids; convulsion; glutamate; immune response; inflammation; neurology; peroxisome proliferator-activated receptor-α; seizure.

Conflict of interest statement

M.C. has been a consultant/advisor to GW Pharma Limited and F. Hoffmann-La Roche Limited, outside of this work. All the other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flowchart of search strategy for systematic review.

References

    1. Fisher R.S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J.H., Elger C.E., Engel J., Forsgren L., French J.A., Glynn M., et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. doi: 10.1111/epi.12550.
    1. Falco-Walter J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020;40:617–623. doi: 10.1055/s-0040-1718719.
    1. Kaur S., Garg R., Aggarwal S., Chawla S.P.S., Pal R. Adult onset seizures: Clinical, etiological, and radiological profile. J. Fam. Med. Prim. Care. 2018;7:191–197. doi: 10.4103/jfmpc.jfmpc_322_16.
    1. Carpay J.A., Aldenkamp A.P., van Donselaar C.A. Complaints associated with the use of antiepileptic drugs: Results from a community-based study. Seizure. 2005;14:198–206. doi: 10.1016/j.seizure.2005.01.008.
    1. Ochoa J.G., Kilgo W.A. The Role of Benzodiazepines in the Treatment of Epilepsy. Curr. Treat. Options Neurol. 2016;18:18. doi: 10.1007/s11940-016-0401-x.
    1. Marsicano G., Goodenough S., Monory K., Hermann H., Eder M., Cannich A., Azad S.C., Cascio M.G., Gutiérrez S.O., van der Stelt M., et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–88. doi: 10.1126/science.1088208.
    1. Monory K., Massa F., Egertová M., Eder M., Blaudzun H., Westenbroek R., Kelsch W., Jacob W., Marsch R., Ekker M., et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron. 2006;51:455–466. doi: 10.1016/j.neuron.2006.07.006.
    1. Rankin L., Fowler C.J. The Basal Pharmacology of Palmitoylethanolamide. Int. J. Mol. Sci. 2020;21:7942. doi: 10.3390/ijms21217942.
    1. Lo Verme J., Fu J., Astarita G., La Rana G., Russo R., Calignano A., Piomelli D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 2005;67:15–19. doi: 10.1124/mol.104.006353.
    1. Solorzano C., Zhu C., Battista N., Astarita G., Lodola A., Rivara S., Mor M., Russo R., Maccarrone M., Antonietti F., et al. Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc. Natl. Acad. Sci. USA. 2009;106:20966–20971. doi: 10.1073/pnas.0907417106.
    1. Jaggar S.I., Hasnie F.S., Sellaturay S., Rice A.S. The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain. 1998;76:189–199. doi: 10.1016/S0304-3959(98)00041-4.
    1. Yu H.L., Deng X.Q., Li Y.J., Li Y.C., Quan Z.S., Sun X.Y. N-palmitoylethanolamide, an endocannabinoid, exhibits antidepressant effects in the forced swim test and the tail suspension test in mice. Pharmacol. Rep. 2011;63:834–839. doi: 10.1016/S1734-1140(11)70596-5.
    1. Colizzi M., Bortoletto R., Costa R., Zoccante L. Palmitoylethanolamide and Its Biobehavioral Correlates in Autism Spectrum Disorder: A Systematic Review of Human and Animal Evidence. Nutrients. 2021;13:1346. doi: 10.3390/nu13041346.
    1. West S., King V., Carey T.S., Lohr K.N., McKoy N., Sutton S.F., Lux L. Systems to rate the strength of scientific evidence. [(accessed on 4 December 2021)];Evid. Rep./Technol. Assess. (Summ.) 2002 :1–11. Available online: .
    1. Lambert D.M., Vandevoorde S., Diependaele G., Govaerts S.J., Robert A.R. Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia. 2001;42:321–327. doi: 10.1046/j.1528-1157.2001.41499.x.
    1. Citraro R., Russo E., Leo A., Russo R., Avagliano C., Navarra M., Calignano A., De Sarro G. Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2’-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur. J. Pharmacol. 2016;791:523–534. doi: 10.1016/j.ejphar.2016.09.029.
    1. Post J.M., Loch S., Lerner R., Remmers F., Lomazzo E., Lutz B., Bindila L. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy. Front. Mol. Neurosci. 2018;11:67. doi: 10.3389/fnmol.2018.00067.
    1. Sheerin A.H., Zhang X., Saucier D.M., Corcoran M.E. Selective antiepileptic effects of N-palmitoylethanolamide, a putative endocannabinoid. Epilepsia. 2004;45:1184–1188. doi: 10.1111/j.0013-9580.2004.16604.x.
    1. Citraro R., Russo E., Scicchitano F., van Rijn C.M., Cosco D., Avagliano C., Russo R., D’Agostino G., Petrosino S., Guida F., et al. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. Neuropharmacology. 2013;69:115–126. doi: 10.1016/j.neuropharm.2012.11.017.
    1. Aghaei I., Rostampour M., Shabani M., Naderi N., Motamedi F., Babaei P., Khakpour-Taleghani B. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. Epilepsy Res. 2015;117:23–28. doi: 10.1016/j.eplepsyres.2015.08.010.
    1. Lerner R., Post J., Loch S., Lutz B., Bindila L. Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:255–267. doi: 10.1016/j.bbalip.2016.11.008.
    1. Fezza F., Marrone M.C., Avvisati R., Di Tommaso M., Lanuti M., Rapino C., Mercuri N.B., Maccarrone M., Marinelli S. Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting. Mol. Cell. Neurosci. 2014;62:1–9. doi: 10.1016/j.mcn.2014.07.003.
    1. Farrelly A.M., Vlachou S., Grintzalis K. Efficacy of Phytocannabinoids in Epilepsy Treatment: Novel Approaches and Recent Advances. Int. J. Environ. Res. Public Health. 2021;18:3993. doi: 10.3390/ijerph18083993.
    1. Espinosa-Jovel C. Cannabinoids in epilepsy: Clinical efficacy and pharmacological considerations. Neurologia. 2021 doi: 10.1016/j.nrleng.2020.02.012. (in press)
    1. Colizzi M., Ruggeri M., Bhattacharyya S. Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Front. Psychol. 2020;11:833. doi: 10.3389/fpsyg.2020.00833.
    1. Laprairie R.B., Bagher A.M., Kelly M.E., Denovan-Wright E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015;172:4790–4805. doi: 10.1111/bph.13250.
    1. O’Sullivan S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016;173:1899–1910. doi: 10.1111/bph.13497.
    1. Filipiuc L.E., Ababei D.C., Alexa-Stratulat T., Pricope C.V., Bild V., Stefanescu R., Stanciu G.D., Tamba B.I. Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics. 2021;13:1823. doi: 10.3390/pharmaceutics13111823.
    1. Maier N., Morris G., Schuchmann S., Korotkova T., Ponomarenko A., Böhm C., Wozny C., Schmitz D. Cannabinoids disrupt hippocampal sharp wave-ripples via inhibition of glutamate release. Hippocampus. 2012;22:1350–1362. doi: 10.1002/hipo.20971.
    1. Polissidis A., Galanopoulos A., Naxakis G., Papahatjis D., Papadopoulou-Daifoti Z., Antoniou K. The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacol. 2013;16:393–403. doi: 10.1017/S1461145712000156.
    1. Ruehle S., Remmers F., Romo-Parra H., Massa F., Wickert M., Wörtge S., Häring M., Kaiser N., Marsicano G., Pape H.C., et al. Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: Distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J. Neurosci. 2013;33:10264–10277. doi: 10.1523/JNEUROSCI.4171-12.2013.
    1. Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia. Front. Pharmacol. 2014;4:169. doi: 10.3389/fphar.2013.00169.
    1. Albayram O., Alferink J., Pitsch J., Piyanova A., Neitzert K., Poppensieker K., Mauer D., Michel K., Legler A., Becker A., et al. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl. Acad. Sci. USA. 2011;108:11256–11261. doi: 10.1073/pnas.1016442108.
    1. Antonucci F., Alpár A., Kacza J., Caleo M., Verderio C., Giani A., Martens H., Chaudhry F.A., Allegra M., Grosche J., et al. Cracking down on inhibition: Selective removal of GABAergic interneurons from hippocampal networks. J. Neurosci. 2012;32:1989–2001. doi: 10.1523/JNEUROSCI.2720-11.2012.
    1. Blair R.E., Deshpande L.S., Sombati S., Elphick M.R., Martin B.R., DeLorenzo R.J. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology. 2009;57:208–218. doi: 10.1016/j.neuropharm.2009.06.007.
    1. Karlócai M.R., Tóth K., Watanabe M., Ledent C., Juhász G., Freund T.F., Maglóczky Z. Redistribution of CB1 cannabinoid receptors in the acute and chronic phases of pilocarpine-induced epilepsy. PLoS ONE. 2011;6:e27196. doi: 10.1371/journal.pone.0027196.
    1. Skaper S.D., Facci L., Giusti P. Mast cells, glia and neuroinflammation: Partners in crime? Immunology. 2014;141:314–327. doi: 10.1111/imm.12170.
    1. Skaper S.D., Facci L. Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012;367:3312–3325. doi: 10.1098/rstb.2011.0391.
    1. Bracken M.B. Why animal studies are often poor predictors of human reactions to exposure. J. R. Soc. Med. 2009;102:120–122. doi: 10.1258/jrsm.2008.08k033.

Source: PubMed

3
Předplatit