Non-Invasive Transcutaneous Vagus Nerve Stimulation for the Treatment of Fibromyalgia Symptoms: A Study Protocol

Andrés Molero-Chamizo, Michael A Nitsche, Armin Bolz, Rafael Tomás Andújar Barroso, José R Alameda Bailén, Jesús Carlos García Palomeque, Guadalupe Nathzidy Rivera-Urbina, Andrés Molero-Chamizo, Michael A Nitsche, Armin Bolz, Rafael Tomás Andújar Barroso, José R Alameda Bailén, Jesús Carlos García Palomeque, Guadalupe Nathzidy Rivera-Urbina

Abstract

Stimulation of the vagus nerve, a parasympathetic nerve that controls the neuro-digestive, vascular, and immune systems, induces pain relief, particularly in clinical conditions such as headache and rheumatoid arthritis. Transmission through vagal afferents towards the nucleus of the solitary tract (NST), the central relay nucleus of the vagus nerve, has been proposed as the main physiological mechanism that reduces pain intensity after vagal stimulation. Chronic pain symptoms of fibromyalgia patients might benefit from stimulation of the vagus nerve via normalization of altered autonomic and immune systems causing their respective symptoms. However, multi-session non-invasive vagal stimulation effects on fibromyalgia have not been evaluated in randomized clinical trials. We propose a parallel group, sham-controlled, randomized study to modulate the sympathetic-vagal balance and pain intensity in fibromyalgia patients by application of non-invasive transcutaneous vagus nerve stimulation (tVNS) over the vagal auricular and cervical branches. We will recruit 136 fibromyalgia patients with chronic moderate to high pain intensity. The primary outcome measure will be pain intensity, and secondary measures will be fatigue, health-related quality of life, sleep disorders, and depression. Heart rate variability and pro-inflammatory cytokine levels will be obtained as secondary physiological measures. We hypothesize that multiple tVNS sessions (five per week, for 4 weeks) will reduce pain intensity and improve quality of life as a result of normalization of the vagal control of nociception and immune-autonomic functions. Since both vagal branches project to the NST, we do not predict significantly different results between the two stimulation protocols.

Keywords: chronic pain; fibromyalgia; transcutaneous; vagus nerve stimulation.

Conflict of interest statement

Michael A. Nitsche is member of the scientific advisory boards of Neuroelectrics and NeuroDevice. Armin Bolz is CEO and owner of tVNS Technologies GmbH, Erlangen. The other authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
tVNS®L device for transcutaneous stimulation of the vagus nerve.
Figure 2
Figure 2
Non-invasive transcutaneous auricular (A) and cervical (B) vagus nerve stimulation will be applied to evaluate the effect of this intervention on fibromyalgia symptoms. Three different electrode montages will be tested: (A) anode positioned over the cymba conchae of the left auricle (verum stimulation) or the left ear lobe (sham) and cathode (return electrode) over the antitragus, (B) anode positioned over the left cervical branch of the vagus nerve in the neck (adjacent to the carotid) (verum stimulation) or two centimeters anterior to this branch (sham) and cathode below the cheek, (C) anode over the left axillary nerve and cathode below the cheek (only verum stimulation, as an added control group). The red circles represent the anode electrode, and the blue circles represent the cathode electrode.
Figure 3
Figure 3
Study design. Measurements refer to primary and secondary outcome measures (FIQR, BPI, PGIC, PSQI, and BDI scores). Heart rate variability will be recorded before and after each tVNS session, and pro-inflammatory cytokine levels (TNF α, IL-1 β, IL-6) will be analyzed before the start of the intervention and after 10 and 20 intervention sessions, as well as 1 week, and 1 month after the end of the intervention. ANS, axillary nerve stimulation at 25 Hz frequency; atVNS, auricular vagus nerve stimulation at 25 Hz frequency; ctVNS, cervical vagus nerve stimulation at 25 Hz frequency; Sham atVNS, auricular vagus nerve stimulation at 1 Hz frequency; Sham ctVNS, cervical vagus nerve stimulation at 1 Hz frequency.

References

    1. Borchers A.T., Gershwin M.E. Fibromyalgia: A Critical and Comprehensive Review. Clin. Rev. Allerg. Immunol. 2015;49:100–151. doi: 10.1007/s12016-015-8509-4.
    1. Sarzi-Puttini P., Giorgi V., Marotto D., Atzeni F. Fibromyalgia: An Update on Clinical Characteristics, Aetiopathogenesis and Treatment. Nat. Rev. Rheumatol. 2020;16:645–660. doi: 10.1038/s41584-020-00506-w.
    1. Chinn S., Caldwell W., Gritsenko K. Fibromyalgia Pathogenesis and Treatment Options Update. Curr. Pain. Headache Rep. 2016;20:25. doi: 10.1007/s11916-016-0556-x.
    1. Maffei M.E. Fibromyalgia: Recent Advances in Diagnosis, Classification, Pharmacotherapy and Alternative Remedies. IJMS. 2020;21:7877. doi: 10.3390/ijms21217877.
    1. Johnson M.I., Claydon L.S., Herbison G.P., Paley C.A., Jones G. Transcutaneous Electrical Nerve Stimulation (TENS) for Fibromyalgia in Adults. In: The Cochrane Collaboration, editor. Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; Chichester, UK: 2016. p. CD012172.
    1. Hammer N., Glätzner J., Feja C., Kühne C., Meixensberger J., Planitzer U., Schleifenbaum S., Tillmann B.N., Winkler D. Human Vagus Nerve Branching in the Cervical Region. PLoS ONE. 2015;10:e0118006. doi: 10.1371/journal.pone.0118006.
    1. Lerman I., Davis B., Huang M., Huang C., Sorkin L., Proudfoot J., Zhong E., Kimball D., Rao R., Simon B., et al. Noninvasive Vagus Nerve Stimulation Alters Neural Response and Physiological Autonomic Tone to Noxious Thermal Challenge. PLoS ONE. 2019;14:e0201212. doi: 10.1371/journal.pone.0201212.
    1. Kox M., Pickkers P. Modulation of the Innate Immune Response through the Vagus Nerve. Nephron. 2015;131:79–84. doi: 10.1159/000435843.
    1. Colzato L.S., Sellaro R., Beste C. Darwin Revisited: The Vagus Nerve Is a Causal Element in Controlling Recognition of other’s Emotions. Cortex. 2017;92:95–102. doi: 10.1016/j.cortex.2017.03.017.
    1. Huston J.M. The Vagus Nerve and the Inflammatory Reflex: Wandering on a New Treatment Paradigm for Systemic Inflammation and Sepsis. Surg. Infect. 2012;13:187–193. doi: 10.1089/sur.2012.126.
    1. Komisaruk B.R., Frangos E. Vagus Nerve Afferent Stimulation: Projection into the Brain, Reflexive Physiological, Perceptual, and Behavioral Responses, and Clinical Relevance. Auton. Neurosci. 2022;237:102908. doi: 10.1016/j.autneu.2021.102908.
    1. Dedoncker J., Vanderhasselt M.-A., Ottaviani C., Slavich G.M. Mental Health during the COVID-19 Pandemic and beyond: The Importance of the Vagus Nerve for Biopsychosocial Resilience. Neurosci. Biobehav. Rev. 2021;125:1–10. doi: 10.1016/j.neubiorev.2021.02.010.
    1. Attenello F., Amar A.P., Liu C., Apuzzo M.L.J. Theoretical Basis of Vagus Nerve Stimulation. In: Slavin K.V., editor. Progress in Neurological Surgery. Volume 29. S. Karger AG; Berlin, Germany: 2015. pp. 20–28.
    1. Yuan H., Silberstein S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache J. Head Face Pain. 2016;56:259–266. doi: 10.1111/head.12650.
    1. Lendvai I.S., Maier A., Scheele D., Hurlemann R., Kinfe T.M. Spotlight on Cervical Vagus Nerve Stimulation for the Treatment of Primary Headache Disorders: A Review. J. Pain Res. 2018;11:1613–1625. doi: 10.2147/JPR.S129202.
    1. Rings T., von Wrede R., Bröhl T., Schach S., Helmstaedter C., Lehnertz K. Impact of Transcutaneous Auricular Vagus Nerve Stimulation on Large-Scale Functional Brain Networks: From Local to Global. Front. Physiol. 2021;12:700261. doi: 10.3389/fphys.2021.700261.
    1. von Wrede R., Rings T., Schach S., Helmstaedter C., Lehnertz K. Transcutaneous Auricular Vagus Nerve Stimulation Induces Stabilizing Modifications in Large-Scale Functional Brain Networks: Towards Understanding the Effects of TaVNS in Subjects with Epilepsy. Sci. Rep. 2021;11:7906. doi: 10.1038/s41598-021-87032-1.
    1. Mirakaj V., Dalli J., Granja T., Rosenberger P., Serhan C.N. Vagus Nerve Controls Resolution and Pro-Resolving Mediators of Inflammation. J. Exp. Med. 2014;211:1037–1048. doi: 10.1084/jem.20132103.
    1. Yuan H., Silberstein S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I: Headache. Headache J. Head Face Pain. 2016;56:71–78. doi: 10.1111/head.12647.
    1. Yuan H., Silberstein S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III. Headache J. Head Face Pain. 2016;56:479–490. doi: 10.1111/head.12649.
    1. Kulshreshtha P., Deepak K.K. Autonomic Nervous System Profile in Fibromyalgia Patients and Its Modulation by Exercise: A Mini Review. Clin. Physiol. Funct. Imaging. 2013;33:83–91. doi: 10.1111/cpf.12000.
    1. Cohen H., Neumann L., Kotler M., Buskila D. Autonomic Nervous System Derangement in Fibromyalgia Syndrome and Related Disorders. Israel Med. Assoc. J. 2001;3:755–760.
    1. Martínez-Lavín M. Fibromyalgia and Small Fiber Neuropathy: The Plot Thickens! Clin. Rheumatol. 2018;37:3167–3171. doi: 10.1007/s10067-018-4300-2.
    1. Adler G.K., Geenen R. Hypothalamic–Pituitary–Adrenal and Autonomic Nervous System Functioning in Fibromyalgia. Rheum. Dis. Clin. N. Am. 2005;31:187–202. doi: 10.1016/j.rdc.2004.10.002.
    1. Martínez-Martínez L.-A., Mora T., Vargas A., Fuentes-Iniestra M., Martínez-Lavín M. Sympathetic Nervous System Dysfunction in Fibromyalgia, Chronic Fatigue Syndrome, Irritable Bowel Syndrome, and Interstitial Cystitis: A Review of Case-Control Studies. J. Clin. Rheumatol. 2014;20:146–150. doi: 10.1097/RHU.0000000000000089.
    1. Hazra S., Venkataraman S., Handa G., Yadav S.L., Wadhwa S., Singh U., Kochhar K.P., Deepak K.K., Sarkar K. A Cross-Sectional Study on Central Sensitization and Autonomic Changes in Fibromyalgia. Front. Neurosci. 2020;14:788. doi: 10.3389/fnins.2020.00788.
    1. Kulshreshtha P., Gupta R., Yadav R.K., Bijlani R.L., Deepak K.K. A Comprehensive Study of Autonomic Dysfunction in the Fibromyalgia Patients. Clin. Auton. Res. 2012;22:117–122. doi: 10.1007/s10286-011-0150-6.
    1. Coskun Benlidayi I. Role of Inflammation in the Pathogenesis and Treatment of Fibromyalgia. Rheumatol. Int. 2019;39:781–791. doi: 10.1007/s00296-019-04251-6.
    1. Littlejohn G., Guymer E. Neurogenic Inflammation in Fibromyalgia. Semin. Immunopathol. 2018;40:291–300. doi: 10.1007/s00281-018-0672-2.
    1. Metyas S., Rezk T., Arkfeld D., Leptich T. Autoinflammation and Immunomodulation in Inflammatory Fibromyalgia Syndrome—A Review. Curr. Rheumatol. Rev. 2017;13:98–102. doi: 10.2174/1573397112666160919120530.
    1. Lange G., Janal M.N., Maniker A., FitzGibbons J., Fobler M., Cook D., Natelson B.H. Safety and Efficacy of Vagus Nerve Stimulation in Fibromyalgia: A Phase I/II Proof of Concept Trial. Pain Med. 2011;12:1406–1413. doi: 10.1111/j.1526-4637.2011.01203.x.
    1. Antal A., Alekseichuk I., Bikson M., Brockmöller J., Brunoni A.R., Chen R., Cohen L.G., Dowthwaite G., Ellrich J., Flöel A., et al. Low Intensity Transcranial Electric Stimulation: Safety, Ethical, Legal Regulatory and Application Guidelines. Clin. Neurophysiol. 2017;128:1774–1809. doi: 10.1016/j.clinph.2017.06.001.
    1. Yavari F., Jamil A., Mosayebi Samani M., Vidor L.P., Nitsche M.A. Basic and Functional Effects of Transcranial Electrical Stimulation (TES)—An Introduction. Neurosci. Biobehav. Rev. 2018;85:81–92. doi: 10.1016/j.neubiorev.2017.06.015.
    1. Butt M.F., Albusoda A., Farmer A.D., Aziz Q. The Anatomical Basis for Transcutaneous Auricular Vagus Nerve Stimulation. J. Anat. 2020;236:588–611. doi: 10.1111/joa.13122.
    1. Deuchars S.A., Lall V.K., Clancy J., Mahadi M., Murray A., Peers L., Deuchars J. Mechanisms Underpinning Sympathetic Nervous Activity and Its Modulation Using Transcutaneous Vagus Nerve Stimulation. Exp. Physiol. 2018;103:326–331. doi: 10.1113/EP086433.
    1. Frangos E., Komisaruk B.R. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: FMRI Evidence in Healthy Humans. Brain Stimul. 2017;10:19–27. doi: 10.1016/j.brs.2016.10.008.
    1. Yakunina N., Kim S.S., Nam E.-C. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI: TRANSCUTANEOUS VNS OPTIMIZATION USING FMRI. Neuromodul. Technol. Neural Interface. 2017;20:290–300. doi: 10.1111/ner.12541.
    1. Verma N., Mudge J.D., Kasole M., Chen R.C., Blanz S.L., Trevathan J.K., Lovett E.G., Williams J.C., Ludwig K.A. Auricular Vagus Neuromodulation—A Systematic Review on Quality of Evidence and Clinical Effects. Front. Neurosci. 2021;15:664740. doi: 10.3389/fnins.2021.664740.
    1. Thompson S.L., O’Leary G.H., Austelle C.W., Gruber E., Kahn A.T., Manett A.J., Short B., Badran B.W. A Review of Parameter Settings for Invasive and Non-Invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front. Neurosci. 2021;15:709436. doi: 10.3389/fnins.2021.709436.
    1. von Wrede R., Surges R. Transcutaneous Vagus Nerve Stimulation in the Treatment of Drug-Resistant Epilepsy. Auton. Neurosci. 2021;235:102840. doi: 10.1016/j.autneu.2021.102840.
    1. Bazzichi L., Giacomelli C., Consensi A., Atzeni F., Batticciotto A., Di Franco M., Casale R., Sarzi-Puttini P. One Year in Review 2016: Fibromyalgia. Clin. Exp. Rheumatol. 2016;34:S145–S149.
    1. Johnson R.L., Wilson C.G. A Review of Vagus Nerve Stimulation as a Therapeutic Intervention. J. Inflamm. Res. 2018;11:203–213. doi: 10.2147/JIR.S163248.
    1. Kutlu N., Özden A.V., Alptekin H.K., Alptekin J.Ö. The Impact of Auricular Vagus Nerve Stimulation on Pain and Life Quality in Patients with Fibromyalgia Syndrome. BioMed Res. Int. 2020;2020:8656218. doi: 10.1155/2020/8656218.
    1. Clancy J.A., Mary D.A., Witte K.K., Greenwood J.P., Deuchars S.A., Deuchars J. Non-Invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimul. 2014;7:871–877. doi: 10.1016/j.brs.2014.07.031.
    1. Ellrich J. Transcutaneous Auricular Vagus Nerve Stimulation. J. Clin. Neurophysiol. 2019;36:437–442. doi: 10.1097/WNP.0000000000000576.
    1. Wang Y., Li S.-Y., Wang D., Wu M.-Z., He J.-K., Zhang J.-L., Zhao B., Hou L.-W., Wang J.-Y., Wang L., et al. Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci. Bull. 2021;37:853–862. doi: 10.1007/s12264-020-00619-y.
    1. Yap J.Y.Y., Keatch C., Lambert E., Woods W., Stoddart P.R., Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front. Neurosci. 2020;14:284. doi: 10.3389/fnins.2020.00284.
    1. Zaehle T., Krauel K. Progress in Brain Research. Volume 264. Elsevier; Amsterdam, The Netherlands: 2021. Transcutaneous Vagus Nerve Stimulation in Patients with Attention-Deficit/Hyperactivity Disorder: A Viable Option? pp. 171–190.
    1. Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A., Burger A.M., Jaramillo A.M., Mertens A., Majid A., et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020) Front. Hum. Neurosci. 2021;14:568051. doi: 10.3389/fnhum.2020.568051.
    1. Kang H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021;18:17. doi: 10.3352/jeehp.2021.18.17.
    1. Nemeroff C.B., Mayberg H.S., Krahl S.E., McNamara J., Frazer A., Henry T.R., George M.S., Charney D.S., Brannan S.K. VNS Therapy in Treatment-Resistant Depression: Clinical Evidence and Putative Neurobiological Mechanisms. Neuropsychopharmacology. 2006;31:1345–1355. doi: 10.1038/sj.npp.1301082.
    1. Kreuzer P.M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., Poeppl T.B., Prasser S.J., Hajak G., Langguth B. Transcutaneous Vagus Nerve Stimulation: Retrospective Assessment of Cardiac Safety in a Pilot Study. Front. Psychiatry. 2012;3:00070. doi: 10.3389/fpsyt.2012.00070.
    1. Kraus T., Hösl K., Kiess O., Schanze A., Kornhuber J., Forster C. BOLD FMRI Deactivation of Limbic and Temporal Brain Structures and Mood Enhancing Effect by Transcutaneous Vagus Nerve Stimulation. J. Neural Transm. 2007;114:1485–1493. doi: 10.1007/s00702-007-0755-z.
    1. Peuker E.T., Filler T.J. The Nerve Supply of the Human Auricle. Clin. Anat. 2002;15:35–37. doi: 10.1002/ca.1089.
    1. Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C. CNS BOLD FMRI Effects of Sham-Controlled Transcutaneous Electrical Nerve Stimulation in the Left Outer Auditory Canal—A Pilot Study. Brain Stimul. 2013;6:798–804. doi: 10.1016/j.brs.2013.01.011.
    1. Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R. Treatment of Chronic Migraine with Transcutaneous Stimulation of the Auricular Branch of the Vagal Nerve (Auricular t-VNS): A Randomized, Monocentric Clinical Trial. J. Headache Pain. 2015;16:63. doi: 10.1186/s10194-015-0543-3.
    1. Badia X., Muriel C., Gracia A., Manuel Núñez-Olarte J., Perulero N., Gálvez R., Carulla J., Cleeland C.S. Validación española del cuestionario Brief Pain Inventory en pacientes con dolor de causa neoplásica. Med. Clínica. 2003;120:52–59. doi: 10.1016/S0025-7753(03)73601-X.
    1. Perrot S., Lantéri-Minet M. Patients’ Global Impression of Change in the Management of Peripheral Neuropathic Pain: Clinical Relevance and Correlations in Daily Practice. Eur. J. Pain. 2019;23:1117–1128. doi: 10.1002/ejp.1378.
    1. Salgueiro M., García-Leiva J.M., Ballesteros J., Hidalgo J., Molina R., Calandre E.P. Validation of a Spanish Version of the Revised Fibromyalgia Impact Questionnaire (FIQR) Health Qual. Life Outcomes. 2013;11:132. doi: 10.1186/1477-7525-11-132.
    1. Buysse D.J., Reynolds C.F., Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Hita-Contreras F., Martínez-López E., Latorre-Román P.A., Garrido F., Santos M.A., Martínez-Amat A. Reliability and Validity of the Spanish Version of the Pittsburgh Sleep Quality Index (PSQI) in Patients with Fibromyalgia. Rheumatol. Int. 2014;34:929–936. doi: 10.1007/s00296-014-2960-z.
    1. Richter P., Werner J., Heerlein A., Kraus A., Sauer H. On the Validity of the Beck Depression Inventory. Psychopathology. 1998;31:160–168. doi: 10.1159/000066239.
    1. De la Rosa-Cáceres A., Stasik-O’Brien S., Rojas A.J., Sanchez-Garcia M., Lozano O.M., Díaz-Batanero C. Spanish Adaptation of the Inventory of Depression and Anxiety Symptoms (IDAS-II) and a Study of Its Psychometric Properties. J. Affect. Disord. 2020;271:81–90. doi: 10.1016/j.jad.2020.03.187.
    1. Penley J.A., Wiebe J.S., Nwosu A. Psychometric Properties of the Spanish Beck Depression Inventory-II in a Medical Sample. Psychol. Assess. 2003;15:569–577. doi: 10.1037/1040-3590.15.4.569.
    1. Arnau R.C., Meagher M.W., Norris M.P., Bramson R. Psychometric Evaluation of the Beck Depression Inventory-II with Primary Care Medical Patients. Health Psychol. 2001;20:112–119. doi: 10.1037/0278-6133.20.2.112.
    1. Lim C.-Y., In J. Randomization in Clinical Studies. Korean J. Anesth. 2019;72:221–232. doi: 10.4097/kja.19049.
    1. Hey S.P., Kimmelman J. The Questionable Use of Unequal Allocation in Confirmatory Trials. Neurology. 2014;82:77–79. doi: 10.1212/01.wnl.0000438226.10353.1c.
    1. Berger V.W., Bour L.J., Carter K., Chipman J.J., Everett C.C., Heussen N., Hewitt C., Hilgers R.-D., Luo Y.A., Renteria J., et al. A Roadmap to Using Randomization in Clinical Trials. BMC Med. Res. Methodol. 2021;21:168. doi: 10.1186/s12874-021-01303-z.
    1. Wolf V., Kühnel A., Teckentrup V., Koenig J., Kroemer N.B. Does Transcutaneous Auricular Vagus Nerve Stimulation Affect Vagally Mediated Heart Rate Variability? A Living and Interactive Bayesian Meta-analysis. Psychophysiology. 2021;58:e13933. doi: 10.1111/psyp.13933.
    1. Brock C., Brock B., Aziz Q., Møller H.J., Pfeiffer Jensen M., Drewes A.M., Farmer A.D. Transcutaneous Cervical Vagal Nerve Stimulation Modulates Cardiac Vagal Tone and Tumor Necrosis Factor-Alpha. Neurogastroenterol. Motil. 2017;29:e12999. doi: 10.1111/nmo.12999.
    1. Keustermans G.C.E., Hoeks S.B.E., Meerding J.M., Prakken B.J., de Jager W. Cytokine Assays: An Assessment of the Preparation and Treatment of Blood and Tissue Samples. Methods. 2013;61:10–17. doi: 10.1016/j.ymeth.2013.04.005.
    1. Numis A.L., Fox C.H., Lowenstein D.J., Norris P.J., Di Germanio C. Comparison of Multiplex Cytokine Assays in a Pediatric Cohort with Epilepsy. Heliyon. 2021;7:e06445. doi: 10.1016/j.heliyon.2021.e06445.
    1. Reckow J., Rahman-Filipiak A., Garcia S., Schlaefflin S., Calhoun O., DaSilva A.F., Bikson M., Hampstead B.M. Tolerability and Blinding of 4x1 High-Definition Transcranial Direct Current Stimulation (HD-TDCS) at Two and Three Milliamps. Brain Stimul. 2018;11:991–997. doi: 10.1016/j.brs.2018.04.022.
    1. Brunoni A.R., Amadera J., Berbel B., Volz M.S., Rizzerio B.G., Fregni F. A Systematic Review on Reporting and Assessment of Adverse Effects Associated with Transcranial Direct Current Stimulation. Int. J. Neuropsychopharmacol. 2011;14:1133–1145. doi: 10.1017/S1461145710001690.
    1. Mourdoukoutas A.P., Truong D.Q., Adair D.K., Simon B.J., Bikson M. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation: High-Resolution Multi-Scale Model For Nvns. Neuromodul. Technol. Neural Interface. 2018;21:261–268. doi: 10.1111/ner.12706.
    1. Wolfe F., Clauw D.J., Fitzcharles M.-A., Goldenberg D.L., Häuser W., Katz R.L., Mease P.J., Russell A.S., Russell I.J., Walitt B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016;46:319–329. doi: 10.1016/j.semarthrit.2016.08.012.

Source: PubMed

3
Předplatit