Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring

Hima Zafar, Asma Channa, Varun Jeoti, Goran M Stojanović, Hima Zafar, Asma Channa, Varun Jeoti, Goran M Stojanović

Abstract

The incidence of diabetes is increasing at an alarming rate, and regular glucose monitoring is critical in order to manage diabetes. Currently, glucose in the body is measured by an invasive method of blood sugar testing. Blood glucose (BG) monitoring devices measure the amount of sugar in a small sample of blood, usually drawn from pricking the fingertip, and placed on a disposable test strip. Therefore, there is a need for non-invasive continuous glucose monitoring, which is possible using a sweat sensor-based approach. As sweat sensors have garnered much interest in recent years, this study attempts to summarize recent developments in non-invasive continuous glucose monitoring using sweat sensors based on different approaches with an emphasis on the devices that can potentially be integrated into a wearable platform. Numerous research entities have been developing wearable sensors for continuous blood glucose monitoring, however, there are no commercially viable, non-invasive glucose monitors on the market at the moment. This review article provides the state-of-the-art in sweat glucose monitoring, particularly keeping in sight the prospect of its commercialization. The challenges relating to sweat collection, sweat sample degradation, person to person sweat amount variation, various detection methods, and their glucose detection sensitivity, and also the commercial viability are thoroughly covered.

Keywords: biosensor; diabetes; hypoglycemia; non-invasive glucose monitoring; sweat based sensing; wearable electronics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the numerous approaches for the measuring of glucose for intense insulin therapy. The figure concept adapted from [3].
Figure 2
Figure 2
Working of biosensors: A close relationship between certain bio-recognition layers and electrical signal transaction. The figure concept adapted from [16].
Figure 3
Figure 3
History of biosensor development for wearables from the beginning to the present.
Figure 4
Figure 4
The direct application of sensors to skin, e.g., (a) Tattoo [54] (Reused with the permission of Copyright 2019, Elsevier), (b) Epidermal Microfluidic Electrochemical Detection System [55] (Reprinted with permission of Copyright© 2017, American Chemical Society), (c) Wearable Tattoo-Based Iontophoretic-Biosensing System for detecting Alcohol in Sweat [56] (Reused with permission of Copyright© 2016, American Chemical Society), (d) A passive wireless capacitive sensor [50] (Reused with the permission of Copyright 2014, John Wiley and Sons), addresses several difficulties in history. The technology is mechanically compatible with the skin, and all of the examples are important as a first step towards reducing perspiration between the skin and the sensors.
Figure 5
Figure 5
(a) The average sweat gland density illustration (glands/cm2) on different areas of the body [57,58]. (b) Scale illustrating the approximate range of levels for several sweat analytes reported in [59,60,61,62,63].
Figure 6
Figure 6
Technique for detecting analytes in sweat as it is released onto skin using multi-analyte RFID patches. The figure concept adapted from [59,65].
Figure 7
Figure 7
(a) A typical commercial non-invasive glucose monitoring (GM) system is depicted. (b) The sensing component of the GM system is being implemented, integrated, and placed directly on the skin. A cross-section of the created GM device inserted into the skin is shown. (c) Illustration of the sensing layers of non-invasive sensors is shown in larger view; the final layer is dependent on different sensing materials which respond to specific analytes, i.e., sweat, and a protective layer to confine the reaction compartment. (d) The integration of a electronic device/system for signal processing and transmission wirelessly.
Figure 8
Figure 8
Various sensing materials employed in electrochemical wearable sweat glucose sensors based on their bio-compatibility with catalysts.
Figure 9
Figure 9
Techniques for sweat collection.
Figure 10
Figure 10
The wearable sweat colorimetric sensor: (a) Optical pictures of flexible, soft microfluidic equipment used for colorimetric skin sweat analysis and mechanical bending (bottom left) and twisting (top left) deformation (bottom right); (b) Microfluidic channels filled with blue-dyed water from the top; (c) A gadget and its interaction with the skin in exploded view; (d) The sweat sample collection process and color analysis of the device’s digital pictures. Reprinted with permission from [104]. Copyright 2019 American Chemical Society.
Figure 11
Figure 11
Textile based wearable sweat colorimetric sensor, using knitted cotton fabric material, for simultaneously detecting sweat pH and lactate, using three layers: (1) chitosan, (2) sodium carboxymethyl cellouse, and (3) indicator dye(methyl orange(MO)), bromocresol green (BCG). Reprinted with permission from [110]. Copyright 2018, Elsevier B.V. All rights reserved.
Figure 12
Figure 12
(a) The screen-printed electrochemically based tattoo, (Path I) for environment, (Path II) for analyte monitoring. Image (b) shows the clear protective sheet is removed, and in (c) the tattoo base paper is softly applied on human skin after dabbing with water for tattoo appliances. Image (d,e) illustrates the level of mechanical stress and strain that a tattoo is used to twist the underlying skin on a human subject. The figure concept adapted from [111,117].
Figure 13
Figure 13
Schematic of a Enzymatic Chrono Amperometric biosensor with mediators, i.e., Prussian blue, nanozymes, etc., interacting with glucose oxidase to detect glucose in sweat. Adapted from [14].
Figure 14
Figure 14
The “Eversense” CGM System from Ascensia Diabetes Care Group is a device that measures glucose levels utilizing sensor technology based on fluorescence: Image taken from https://www.ascensiadiabetes.com (accessed on 10 November 2021).
Figure 15
Figure 15
The basic configuration of photoacoustic spectroscopy (PAS) sensing is shown here. The laser beam from tunable and pulsed QCL laser is irradiated on skin, producing a thermal expansion in the skin to generate the ultrasonic wave. The thermal absorption and thus the ultrasound produced is dependent on ISF constituents such as glucose. The ultrasonic wave is amplified in the acoustic resonator, also known as the cell, and detected through a piezoelectric transducer such as a microphone. After that, the electrical signal corresponding to photoacoustic signal at the piezo sensor’s output is amplified, digitized, and forwarded to the computer for analysis. As the near- or mid-IR wavelengths are tuned one at a time, the amplitude of the corresponding photoacoustic signal indicates which wavelengths are absorbed more efficiently than others. Using ED-QCL, higher-order glucose wavelengths between 1 and 1.25 microns can be easily detected.
Figure 16
Figure 16
Effects of (a) the skin and sweat glands gap on (b) time necessary to fill the new sweat sample under a sensor. The figure concept adapted from [59].
Figure 17
Figure 17
Wearable devices introduced by some companies that aspire to commercialize wearable sweat-sensing devices. (a) The BACtrack Skyn is a wearable alcohol monitor patch device for monitoring transdermal alcohol in real time. This product is for research only and is not yet commercially available; image taken from https://skyn.bactrack.com (accessed on 15 November 2021). (b) Sweat collection patch for drug testing developed and sold by Alcopro; image taken from https://www.alcopro.com (accessed on 15 November 2021). (c) The SCRAM CAM, an ankle bracelet for alcohol testing; image taken from https://www.scramsystems.com (accessed on 15 November 2021). (d) The ELITechGroup proposed a macroduct sweat collection system by ELITechGroup for diagnosis of cystic fibrosis; image taken from https://www.elitechgroup.com (accessed on 15 November 2021).

References

    1. Younk L.M., Mikeladze M., Tate D., Davis S.N. Exercise-related hypoglycemia in diabetes mellitus. Expert Rev. Endocrinol. Metab. 2011;6:93–108. doi: 10.1586/eem.10.78.
    1. WHO Diabetes. [(accessed on 15 November 2021)]. Available online: .
    1. Goodarzi M., Sharma S., Ramon H., Saeys W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC Trends Anal. Chem. 2015;67:147–158. doi: 10.1016/j.trac.2014.12.005.
    1. Bratlie K.M., York R.L., Invernale M.A., Langer R., Anderson D.G. Materials for diabetes therapeutics. Adv. Healthc. Mater. 2012;1:267–284. doi: 10.1002/adhm.201200037.
    1. Nathan D.M., DCCT/EDIC Research Group The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care. 2014;37:9–16. doi: 10.2337/dc13-2112.
    1. Bruen D., Delaney C., Florea L., Diamond D. Glucose sensing for diabetes monitoring: Recent developments. Sensors. 2017;17:1866. doi: 10.3390/s17081866.
    1. Badugu R., Lakowicz J.R., Geddes C.D. Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: Potential application to ophthalmic diagnostics. Talanta. 2005;65:762–768. doi: 10.1016/j.talanta.2004.08.003.
    1. Makaram P., Owens D., Aceros J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics. 2014;4:27–46. doi: 10.3390/diagnostics4020027.
    1. Klonoff D.C. Continuous glucose monitoring: Roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–1239. doi: 10.2337/diacare.28.5.1231.
    1. Toghill K.E., Compton R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010;5:1246–1301.
    1. Yu Z., Jiang N., Kazarian S.G., Tasoglu S., Yetisen A.K. Optical sensors for continuous glucose monitoring. Prog. Biomed. Eng. 2021;3:022004. doi: 10.1088/2516-1091/abe6f8.
    1. Pandey R., Paidi S.K., Valdez T.A., Zhang C., Spegazzini N., Dasari R.R., Barman I. Noninvasive monitoring of blood glucose with Raman spectroscopy. Accounts Chem. Res. 2017;50:264–272. doi: 10.1021/acs.accounts.6b00472.
    1. Yadav J., Rani A., Singh V., Murari B.M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. Control. 2015;18:214–227. doi: 10.1016/j.bspc.2015.01.005.
    1. Kim J., Campbell A.S., Wang J. Wearable non-invasive epidermal glucose sensors: A review. Talanta. 2018;177:163–170. doi: 10.1016/j.talanta.2017.08.077.
    1. Moonen E.J., Haakma J.R., Peri E., Pelssers E., Mischi M., den Toonder J.M. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. View. 2020;1:20200077. doi: 10.1002/VIW.20200077.
    1. D’Orazio P. Biosensors in clinical chemistry. Clin. Chim. Acta. 2003;334:41–69. doi: 10.1016/S0009-8981(03)00241-9.
    1. Clark L.C., Jr., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962;102:29–45. doi: 10.1111/j.1749-6632.1962.tb13623.x.
    1. Kadish A.H. Automation Control of Blood Sugar. I. a Servomechanism for Glucose Monitoring and Control. Am. J. Med. Electron. 1964;3:82–86.
    1. Kesavadev J., Saboo B., Krishna M.B., Krishnan G. Evolution of insulin delivery devices: From syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther. 2020;11:1251–1269. doi: 10.1007/s13300-020-00831-z.
    1. Hirsch I.B. Role of Continuous Glucose Monitoring in Diabetes Treatment. Volume 1 American Diabetes Association; Arlington, VA, USA: 2018. Introduction: History of glucose monitoring.
    1. Clemens A.H. Blood Glucose Control Apparatus. 4,151,845. U.S. Patent. 1979 May 1;
    1. Smith E., Kilpatrick E. Intra-operative blood glucose measurements: The effect of haematocrit on glucose test strips. Anaesthesia. 1994;49:129–132. doi: 10.1111/j.1365-2044.1994.tb03369.x.
    1. Wang J. Real-time electrochemical monitoring: Toward green analytical chemistry. Acc. Chem. Res. 2002;35:811–816. doi: 10.1021/ar010066e.
    1. Robertson D.L., Joyce G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344:467–468. doi: 10.1038/344467a0.
    1. Rothman S. Physiology and Biochemistry of the Skin. University of Chicago Press; Chicago, IL, USA: 1954.
    1. Lobitz W., Osterberg A. Chemistry of palmar sweat: III. Reducing substances (glucose) Arch. Dermatol. Syphilol. 1947;56:819–826. doi: 10.1001/archderm.1947.01520120107012.
    1. Olarte O., Chilo J., Pelegri-Sebastia J., Barbé K., Van Moer W. Glucose detection in human sweat using an electronic nose; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine And Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 1462–1465.
    1. Wang J. Electrochemical glucose biosensors. Chem. Rev. 2008;108:814–825. doi: 10.1021/cr068123a.
    1. Moyer J., Wilson D., Finkelshtein I., Wong B., Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 2012;14:398–402. doi: 10.1089/dia.2011.0262.
    1. Bariya M., Nyein H., Javey A. Wearable sweat sensors. Nat. Electron. 2018;1:160–171. doi: 10.1038/s41928-018-0043-y.
    1. Glennon T., O’Quigley C., McCaul M., Matzeu G., Beirne S., Wallace G., Stroiescu F., O’Mahoney N., White P., Diamond D. ‘SWEATCH’: A wearable platform for harvesting and analysing sweat sodium content. Electroanalysis. 2016;28:1283–1289. doi: 10.1002/elan.201600106.
    1. Heikenfeld J. Let them see you sweat. IEEE Spectrum. 2014;51:46–63. doi: 10.1109/MSPEC.2014.6934933.
    1. Bandodkar A.J., Jia W., Yardımcı C., Wang X., Ramirez J., Wang J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015;87:394–398. doi: 10.1021/ac504300n.
    1. Tierney M.J., Tamada J.A., Potts R.O., Jovanovic L., Garg S., Cygnus Research Team Clinical evaluation of the GlucoWatch® biographer: A continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 2001;16:621–629. doi: 10.1016/S0956-5663(01)00189-0.
    1. Sempionatto J.R., Nakagawa T., Pavinatto A., Mensah S.T., Imani S., Mercier P., Wang J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip. 2017;17:1834–1842. doi: 10.1039/C7LC00192D.
    1. Lee H., Song C., Hong Y.S., Kim M.S., Cho H.R., Kang T., Shin K., Choi S.H., Hyeon T., Kim D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017;3:e1601314. doi: 10.1126/sciadv.1601314.
    1. Lee H., Choi T.K., Lee Y.B., Cho H.R., Ghaffari R., Wang L., Choi H.J., Chung T.D., Lu N., Hyeon T., et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016;11:566–572. doi: 10.1038/nnano.2016.38.
    1. Emaminejad S., Gao W., Wu E., Davies Z.A., Nyein H.Y.Y., Challa S., Ryan S.P., Fahad H.M., Chen K., Shahpar Z., et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA. 2017;114:4625–4630. doi: 10.1073/pnas.1701740114.
    1. Gao W., Emaminejad S., Nyein H.Y.Y., Challa S., Chen K., Peck A., Fahad H.M., Ota H., Shiraki H., Kiriya D., et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509–514. doi: 10.1038/nature16521.
    1. Seshadri D.R., Rowbottom J.R., Drummond C., Voos J.E., Craker J. A review of wearable technology: Moving beyond the hype: From need through sensor implementation; Proceedings of the 2016 8th Cairo International Biomedical Engineering Conference (CIBEC); Cairo, Egypt. 15–17 December 2016; Piscataway, NJ, USA: IEEE; 2016. pp. 52–55.
    1. Bandodkar A.J., Molinnus D., Mirza O., Guinovart T., Windmiller J.R., Valdés-Ramírez G., Andrade F.J., Schöning M.J., Wang J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 2014;54:603–609. doi: 10.1016/j.bios.2013.11.039.
    1. Tech Briefs Wearable Device Measures Cortisol in Sweat. [(accessed on 15 November 2021)]. Available online: .
    1. Parlak O. Portable and wearable real-time stress monitoring: A critical review. Sens. Actuators Rep. 2021;3:100036. doi: 10.1016/j.snr.2021.100036.
    1. Jung D.G., Jung D., Kong S.H. A lab-on-a-chip-based non-invasive optical sensor for measuring glucose in saliva. Sensors. 2017;17:2607. doi: 10.3390/s17112607.
    1. Yao H., Shum A.J., Cowan M., Lähdesmäki I., Parviz B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011;26:3290–3296. doi: 10.1016/j.bios.2010.12.042.
    1. Wang C., Shim E., Chang H.K., Lee N., Kim H.R., Park J. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosens. Bioelectron. 2020;169:112652. doi: 10.1016/j.bios.2020.112652.
    1. Toi P.T., Trung T.Q., Dang T.M.L., Bae C.W., Lee N.E. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection. ACS Appl. Mater. Interfaces. 2019;11:10707–10717. doi: 10.1021/acsami.8b20583.
    1. Song Y., Min J., Yu Y., Wang H., Yang Y., Zhang H., Gao W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020;6:eaay9842. doi: 10.1126/sciadv.aay9842.
    1. Song Y., Min J., Gao W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano. 2019;13:12280–12286. doi: 10.1021/acsnano.9b08323.
    1. Huang X., Liu Y., Chen K., Shin W.J., Lu C.J., Kong G.W., Patnaik D., Lee S.H., Cortes J.F., Rogers J.A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small. 2014;10:3083–3090. doi: 10.1002/smll.201400483.
    1. Baker L.B., Ungaro C.T., Barnes K.A., Nuccio R.P., Reimel A.J., Stofan J.R. Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment. Physiol. Rep. 2014;2:e12007. doi: 10.14814/phy2.12007.
    1. Huestis M.A., Oyler J.M., Cone E.J., Wstadik A.T., Schoendorfer D., Joseph R.E., Jr. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. Biomed. Sci. Appl. 1999;733:247–264. doi: 10.1016/S0378-4347(99)00246-7.
    1. Chen Y., Lu S., Zhang S., Li Y., Qu Z., Chen Y., Lu B., Wang X., Feng X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017;3:e1701629. doi: 10.1126/sciadv.1701629.
    1. Kim J., de Araujo W.R., Samek I.A., Bandodkar A.J., Jia W., Brunetti B., Paixao T.R., Wang J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015;51:41–45. doi: 10.1016/j.elecom.2014.11.024.
    1. Martín A., Kim J., Kurniawan J.F., Sempionatto J.R., Moreto J.R., Tang G., Campbell A.S., Shin A., Lee M.Y., Liu X., et al. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens. 2017;2:1860–1868. doi: 10.1021/acssensors.7b00729.
    1. Kim J., Jeerapan I., Imani S., Cho T.N., Bandodkar A., Cinti S., Mercier P.P., Wang J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016;1:1011–1019. doi: 10.1021/acssensors.6b00356.
    1. Thomson M. A comparison between the number and distribution of functioning eccrine sweat glands in Europeans and Africans. J. Physiol. 1954;123:225. doi: 10.1113/jphysiol.1954.sp005045.
    1. McSwiney B. The Composition of Human Perspiration (Samuel Hyde Memorial Lecture): (Section of Physical Medicine) Proc. R. Soc. Med. 1934;27:839.
    1. Sonner Z., Wilder E., Heikenfeld J., Kasting G., Beyette F., Swaile D., Sherman F., Joyce J., Hagen J., Kelley-Loughnane N., et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics. 2015;9:031301. doi: 10.1063/1.4921039.
    1. Katchman B.A., Zhu M., Blain Christen J., Anderson K.S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteom. -Clin. Appl. 2018;12:1800010. doi: 10.1002/prca.201800010.
    1. Calderón-Santiago M., Priego-Capote F., Turck N., Robin X., Jurado-Gámez B., Sanchez J.C., De Castro M.D.L. Human sweat metabolomics for lung cancer screening. Anal. Bioanal. Chem. 2015;407:5381–5392. doi: 10.1007/s00216-015-8700-8.
    1. Verde T., Shephard R., Corey P., Moore R. Sweat composition in exercise and in heat. J. Appl. Physiol. 1982;53:1540–1545. doi: 10.1152/jappl.1982.53.6.1540.
    1. Aruoma O., Reilly T., MacLaren D., Halliwell B. Iron, copper and zinc concentrations in human sweat and plasma; the effect of exercise. Clin. Chim. Acta. 1988;177:81–87. doi: 10.1016/0009-8981(88)90310-5.
    1. Cui C.Y., Schlessinger D. Eccrine sweat gland development and sweat secretion. Exp. Dermatol. 2015;24:644–650. doi: 10.1111/exd.12773.
    1. Rose D.P., Ratterman M.E., Griffin D.K., Hou L., Kelley-Loughnane N., Naik R.R., Hagen J.A., Papautsky I., Heikenfeld J.C. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2014;62:1457–1465. doi: 10.1109/TBME.2014.2369991.
    1. Heikenfeld J., Jajack A., Feldman B., Granger S.W., Gaitonde S., Begtrup G., Katchman B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019;37:407–419. doi: 10.1038/s41587-019-0040-3.
    1. Rohit A., Stapleton F., Brown S.H., Mitchell T.W., Willcox M.D. Comparison of tear lipid profile among basal, reflex, and flush tear samples. Optom. Vis. Sci. 2014;91:1391–1395. doi: 10.1097/OPX.0000000000000411.
    1. Morzel M., Truntzer C., Neyraud E., Brignot H., Ducoroy P., Lucchi G., Canlet C., Gaillard S., Nicod F., Nicklaus S., et al. Associations between food consumption patterns and saliva composition: Specificities of eating difficulties children. Physiol. Behav. 2017;173:116–123. doi: 10.1016/j.physbeh.2017.02.005.
    1. Chen X., Gasecka P., Formanek F., Galey J.B., Rigneault H. In vivo single human sweat gland activity monitoring using coherent anti-Stokes Raman scattering and two-photon excited autofluorescence microscopy. Br. J. Dermatol. 2016;174:803–812. doi: 10.1111/bjd.14292.
    1. Inoue Y., Shibasaki M., Ueda H., Ishizashi H. Mechanisms underlying the age-related decrement in the human sweating response. Eur. J. Appl. Physiol. Occup. Physiol. 1999;79:121–126. doi: 10.1007/s004210050485.
    1. Weschler L.B. Sweat electrolyte concentrations obtained from within occlusive coverings are falsely high because sweat itself leaches skin electrolytes. J. Appl. Physiol. 2008;105:1376–1377. doi: 10.1152/japplphysiol.00924.2007.
    1. Wilke K., Martin A., Terstegen L., Biel S. A short history of sweat gland biology. Int. J. Cosmet. Sci. 2007;29:169–179. doi: 10.1111/j.1467-2494.2007.00387.x.
    1. Costa F., Galloway D.H., Margen S. Regional and total body sweat composition of men fed controlled diets. Am. J. Clin. Nutr. 1969;22:52–58. doi: 10.1093/ajcn/22.1.52.
    1. Amano T., Gerrett N., Inoue Y., Nishiyasu T., Havenith G., Kondo N. Determination of the maximum rate of eccrine sweat glands’ ion reabsorption using the galvanic skin conductance to local sweat rate relationship. Eur. J. Appl. Physiol. 2016;116:281–290. doi: 10.1007/s00421-015-3275-9.
    1. Chen W., Elizondo R. Peripheral modification of thermoregulatory function during heat acclimation. J. Appl. Physiol. 1974;37:367–373. doi: 10.1152/jappl.1974.37.3.367.
    1. Waterhouse J., Aizawa S., Nevill A., Edwards B., Weinert D., Atkinson G., Reilly T. Rectal temperature, distal sweat rate, and forearm blood flow following mild exercise at two phases of the circadian cycle. Chronobiol. Int. 2007;24:63–85. doi: 10.1080/07420520601142551.
    1. Baker L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature. 2019;6:211–259. doi: 10.1080/23328940.2019.1632145.
    1. La Count T.D., Jajack A., Heikenfeld J., Kasting G.B. Modeling glucose transport from systemic circulation to sweat. J. Pharm. Sci. 2019;108:364–371. doi: 10.1016/j.xphs.2018.09.026.
    1. Liang M., Yan X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019;52:2190–2200. doi: 10.1021/acs.accounts.9b00140.
    1. Wang J., Lin Y. Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal. Chem. 2008;27:619–626. doi: 10.1016/j.trac.2008.05.009.
    1. Shu Y., Su T., Lu Q., Shang Z., Xu Q., Hu X. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal. Chem. 2021;93:16222–16230. doi: 10.1021/acs.analchem.1c04106.
    1. Tehrani F., Bavarian B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 2016;6:127975. doi: 10.1038/srep27975.
    1. Kenarkob M., Pourghobadi Z. Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functionalized multi-walled carbon nano-tubes. Microchem. J. 2019;146:1019–1025. doi: 10.1016/j.microc.2019.02.038.
    1. Fang L., Liu B., Liu L., Li Y., Huang K., Zhang Q. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators Chem. 2016;222:1096–1102. doi: 10.1016/j.snb.2015.08.032.
    1. Zhu H., Li L., Zhou W., Shao Z., Chen X. Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B. 2016;4:7333–7349. doi: 10.1039/C6TB02037B.
    1. Xiong C., Tian L., Xiao C., Xue Z., Zhou F., Zhou H., Zhao Y., Chen M., Wang Q., Qu Y., et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020;65:2100–2106. doi: 10.1016/j.scib.2020.07.031.
    1. Ding S., Lyu Z., Fang L., Li T., Zhu W., Li S., Li X., Li J.C., Du D., Lin Y. Single-Atomic Site Catalyst with Heme Enzymes-Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. Small. 2021;17:2100664. doi: 10.1002/smll.202100664.
    1. Cui Y., Duan W., Jin Y., Wo F., Xi F., Wu J. Ratiometric fluorescent Nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS Sens. 2020;5:2096–2105. doi: 10.1021/acssensors.0c00718.
    1. Chinnayelka S., McShane M. RET nanobiosensors using affinity of an apo-enzyme toward its substrate; Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Francisco, CA, USA. 1–5 September 2004; Piscataway, NJ, USA: IEEE; 2004. pp. 2599–2602.
    1. James T.D., Sandanayake K.S., Shinkai S. A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. Engl. 1994;33:2207–2209. doi: 10.1002/anie.199422071.
    1. Mai H.H., Tran D.H., Janssens E. Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method. Microchim. Acta. 2019;186:245. doi: 10.1007/s00604-019-3353-5.
    1. Yao S., Ren P., Song R., Liu Y., Huang Q., Dong J., O’Connor B.T., Zhu Y. Nanomaterial-enabled flexible and stretchable sensing systems: Processing, integration, and applications. Adv. Mater. 2020;32:1902343. doi: 10.1002/adma.201902343.
    1. Naikoo G.A., Salim H., Hassan I.U., Awan T., Arshad F., Pedram M.Z., Ahmed W., Qurashi A. Non-Enzymatic Glucose Sensors Composed of Metal and Metal Oxide Nanostructures for Diabetes Management: Recent Advances, Challenges and Future Perspective. Front. Chem. 2021;9:786. doi: 10.3389/fchem.2021.748957.
    1. Hwang D.W., Lee S., Seo M., Chung T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta. 2018;1033:1–34. doi: 10.1016/j.aca.2018.05.051.
    1. Liu S., Zeng W., Guo Q., Li Y. Metal oxide-based composite for non-enzymatic glucose sensors. J. Mater. Sci. Mater. Electron. 2020;31:16111–16136. doi: 10.1007/s10854-020-04239-0.
    1. Liu H., Wang L., Lin G., Feng Y. Recent Progress in the Fabrication of Flexible Materials for Wearable Sensor. Biomater. Sci. 2021 doi: 10.1039/D1BM01136G.
    1. Bae C.W., Toi P.T., Kim B.Y., Lee W.I., Lee H.B., Hanif A., Lee E.H., Lee N.E. Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring. ACS Appl. Mater. Interfaces. 2019;11:14567–14575. doi: 10.1021/acsami.9b00848.
    1. Wang Y., Wang X., Lu W., Yuan Q., Zheng Y., Yao B. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta. 2019;198:86–92. doi: 10.1016/j.talanta.2019.01.104.
    1. Yu M., Li Y.T., Hu Y., Tang L., Yang F., Lv W.L., Zhang Z.Y., Zhang G.J. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J. Electroanal. Chem. 2021;882:115029. doi: 10.1016/j.jelechem.2021.115029.
    1. Li G., Mo X., Law W.C., Chan K.C. Wearable fluid capture devices for electrochemical sensing of sweat. ACS Appl. Mater. Interfaces. 2018;11:238–243. doi: 10.1021/acsami.8b17419.
    1. Gu Y., Zhang T., Chen H., Wang F., Pu Y., Gao C., Li S. Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res. Lett. 2019;14:263. doi: 10.1186/s11671-019-3084-x.
    1. An B.W., Shin J.H., Kim S.Y., Kim J., Ji S., Park J., Lee Y., Jang J., Park Y.G., Cho E., et al. Smart sensor systems for wearable electronic devices. Polymers. 2017;9:303. doi: 10.3390/polym9080303.
    1. Bandodkar A.J., Gutruf P., Choi J., Lee K., Sekine Y., Reeder J.T., Jeang W.J., Aranyosi A.J., Lee S.P., Model J.B., et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019;5:eaav3294. doi: 10.1126/sciadv.aav3294.
    1. Choi J., Bandodkar A.J., Reeder J.T., Ray T.R., Turnquist A., Kim S.B., Nyberg N., Hourlier-Fargette A., Model J.B., Aranyosi A.J., et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019;4:379–388. doi: 10.1021/acssensors.8b01218.
    1. Koh A., Kang D., Xue Y., Lee S., Pielak R.M., Kim J., Hwang T., Min S., Banks A., Bastien P., et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016;8:366ra165. doi: 10.1126/scitranslmed.aaf2593.
    1. Kim S.B., Zhang Y., Won S.M., Bandodkar A.J., Sekine Y., Xue Y., Koo J., Harshman S.W., Martin J.A., Park J.M., et al. Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics. Small. 2018;14:1703334. doi: 10.1002/smll.201703334.
    1. Guinovart T., Valdés-Ramírez G., Windmiller J.R., Andrade F.J., Wang J. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis. 2014;26:1345–1353. doi: 10.1002/elan.201300558.
    1. He W., Wang C., Wang H., Jian M., Lu W., Liang X., Zhang X., Yang F., Zhang Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 2019;5:eaax0649. doi: 10.1126/sciadv.aax0649.
    1. Guinovart T., Parrilla M., Crespo G.A., Rius F.X., Andrade F.J. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst. 2013;138:5208–5215. doi: 10.1039/c3an00710c.
    1. Promphet N., Rattanawaleedirojn P., Siralertmukul K., Soatthiyanon N., Potiyaraj P., Thanawattano C., Hinestroza J.P., Rodthongkum N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta. 2019;192:424–430. doi: 10.1016/j.talanta.2018.09.086.
    1. Windmiller J.R., Bandodkar A.J., Valdés-Ramírez G., Parkhomovsky S., Martinez A.G., Wang J. Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 2012;48:6794–6796. doi: 10.1039/c2cc32839a.
    1. Windmiller J.R., Bandodkar A.J., Parkhomovsky S., Wang J. Stamp transfer electrodes for electrochemical sensing on non-planar and oversized surfaces. Analyst. 2012;137:1570–1575. doi: 10.1039/c2an35041f.
    1. Guinovart T., Bandodkar A.J., Windmiller J.R., Andrade F.J., Wang J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst. 2013;138:7031–7038. doi: 10.1039/c3an01672b.
    1. Jia W., Bandodkar A.J., Valdés-Ramírez G., Windmiller J.R., Yang Z., Ramírez J., Chan G., Wang J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013;85:6553–6560. doi: 10.1021/ac401573r.
    1. De Guzman K., Morrin A. Screen-printed Tattoo Sensor towards the Non-Invasive Assessment of the Skin Barrier. Electroanalysis. 2017;29:188–196. doi: 10.1002/elan.201600572.
    1. Wang Y., Qiu Y., Ameri S.K., Jang H., Dai Z., Huang Y., Lu N. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. npj Flex. Electron. 2018;2:6. doi: 10.1038/s41528-017-0019-4.
    1. Abellán-Llobregat A., Jeerapan I., Bandodkar A., Vidal L., Canals A., Wang J., Morallon E. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron. 2017;91:885–891. doi: 10.1016/j.bios.2017.01.058.
    1. Anastasova S., Crewther B., Bembnowicz P., Curto V., Ip H.M., Rosa B., Yang G.Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 2017;93:139–145. doi: 10.1016/j.bios.2016.09.038.
    1. Schazmann B., Morris D., Slater C., Beirne S., Fay C., Reuveny R., Moyna N., Diamond D. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Anal. Methods. 2010;2:342–348. doi: 10.1039/b9ay00184k.
    1. Oh S.Y., Hong S.Y., Jeong Y.R., Yun J., Park H., Jin S.W., Lee G., Oh J.H., Lee H., Lee S.S., et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 2018;10:13729–13740. doi: 10.1021/acsami.8b03342.
    1. Bandodkar A.J., Jeang W.J., Ghaffari R., Rogers J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 2019;12:1–22. doi: 10.1146/annurev-anchem-061318-114910.
    1. Mugweru A., Clark B.L., Pishko M.V. Electrochemical sensor array for glucose monitoring fabricated by rapid immobilization of active glucose oxidase within photochemically polymerized hydrogels. J. Diabetes Sci. Technol. 2007;1:366–371. doi: 10.1177/193229680700100308.
    1. Boyne M.S., Silver D.M., Kaplan J., Saudek C.D. Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes. 2003;52:2790–2794. doi: 10.2337/diabetes.52.11.2790.
    1. Zheng X.T., Choi Y., Phua D.G.G., Tan Y.N. Noncovalent fluorescent biodot–protein conjugates with well-preserved native functions for improved sweat glucose detection. Bioconjugate Chem. 2020;31:754–763. doi: 10.1021/acs.bioconjchem.9b00856.
    1. Rocha D.P., Cardoso R.M., Tormin T.F., de Araujo W.R., Munoz R.A., Richter E.M., Angnes L. Batch-injection Analysis Better than ever: New Materials for Improved Electrochemical Detection and On-site Applications. Electroanalysis. 2018;30:1386–1399. doi: 10.1002/elan.201800042.
    1. Huderová L., Štulík K. A contribution to the problem of increasing fhe sensitivity of anodic-stripping voltammetry. Talanta. 1972;19:1285–1293. doi: 10.1016/0039-9140(72)80125-5.
    1. Jeong R.A., Hwang J.Y., Joo S., Chung T.D., Park S., Kang S.K., Lee W.Y., Kim H.C. In vivo calibration of the subcutaneous amperometric glucose sensors using a non-enzyme electrode. Biosens. Bioelectron. 2003;19:313–319. doi: 10.1016/S0956-5663(03)00219-7.
    1. Boysen T.C., Yanagawa S., Sato F., Sato K. A modified anaerobic method of sweat collection. J. Appl. Physiol. 1984;56:1302–1307. doi: 10.1152/jappl.1984.56.5.1302.
    1. Sankhala D., Pali M., Lin K.C., Jagannath B., Muthukumar S., Prasad S. Analysis of bio-electro-chemical signals from passive sweat-based wearable electro-impedance spectroscopy (EIS) towards assessing blood glucose modulations. arXiv. 20212104.01793
    1. Vashist S.K. Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta. 2012;750:16–27. doi: 10.1016/j.aca.2012.03.043.
    1. Birgersson U.H., Birgersson E., Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. J. Electr. Bioimpedance. 2012;3:51–60. doi: 10.5617/jeb.400.
    1. Larin K.V., Eledrisi M.S., Motamedi M., Esenaliev R.O. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care. 2002;25:2263–2267. doi: 10.2337/diacare.25.12.2263.
    1. Ghosn M.G., Sudheendran N., Wendt M., Glasser A., Tuchin V.V., Larin K.V. Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography. J. Biophotonics. 2010;3:25–33. doi: 10.1002/jbio.200910075.
    1. Shibata H., Heo Y.J., Okitsu T., Matsunaga Y., Kawanishi T., Takeuchi S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. USA. 2010;107:17894–17898. doi: 10.1073/pnas.1006911107.
    1. Pfützner A., Caduff A., Larbig M., Schrepfer T., Forst T. Impact of posture and fixation technique on impedance spectroscopy used for continuous and noninvasive glucose monitoring. Diabetes Technol. Ther. 2004;6:435–441. doi: 10.1089/1520915041705839.
    1. Deiss D., Szadkowska A., Gordon D., Mallipedhi A., Schütz-Fuhrmann I., Aguilera E., Ringsell C., De Block C., Irace C. Clinical practice recommendations on the routine use of Eversense, the first long-term implantable continuous glucose monitoring system. Diabetes Technol. Ther. 2019;21:254–264. doi: 10.1089/dia.2018.0397.
    1. Scarpa E., Mastronardi V., Guido F., Algieri L., Qualtieri A., Fiammengo R., Rizzi F., De Vittorio M. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Sci. Rep. 2020;10:10854. doi: 10.1038/s41598-020-67706-y.
    1. Tiller B. Ph.D. Thesis. University of Glasgow; Glasgow, UK: 2016. Surface Acoustic Wave Streaming in a PDMS Microfluidic System: Effect of Frequency and Fluid Geometry & A Remote Ultrasonic Glucose Sensor.
    1. Sim J.Y., Ahn C.G., Jeong E.J., Kim B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 2018;8:1059. doi: 10.1038/s41598-018-19340-y.
    1. Delbeck S., Vahlsing T., Leonhardt S., Steiner G., Heise H.M. Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy—Opportunities and recent advances. Anal. Bioanal. Chem. 2019;411:63–77. doi: 10.1007/s00216-018-1395-x.
    1. Abd Salam N.A.B., bin Mohd Saad W.H., Manap Z.B., Salehuddin F. The evolution of non-invasive blood glucose monitoring system for personal application. J. Telecommun. Electron. Comput. Eng. (JTEC) 2016;8:59–65.
    1. Huang J., Zhang Y., Wu J. Review of non-invasive continuous glucose monitoring based on impedance spectroscopy. Sens. Actuators Phys. 2020;311:112103. doi: 10.1016/j.sna.2020.112103.
    1. Yilmaz T., Foster R., Hao Y. Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics. 2019;9:6. doi: 10.3390/diagnostics9010006.
    1. Kost J., Mitragotri S., Gabbay R.A., Pishko M., Langer R. Transdermal monitoring of glucose and other analytes using ultrasound. Nat. Med. 2000;6:347–350. doi: 10.1038/73213.
    1. Pu Z., Zhang X., Yu H., Tu J., Chen H., Liu Y., Su X., Wang R., Zhang L., Li D. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021;7:eabd0199. doi: 10.1126/sciadv.abd0199.
    1. Khan R.A., Memon S., Awan J.H., Zafar H., Mohammadani K. Enhancement of transmission efficiency in wireless on-body medical sensors. Eng. Sci. Technol. Int. Res. J. 2017;1:16–21.
    1. Poongodi T., Rathee A., Indrakumari R., Suresh P. Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Springer; Berlin/Heidelberg, Germany: 2020. IoT sensing capabilities: Sensor deployment and node discovery, wearable sensors, wireless body area network (WBAN), data acquisition; pp. 127–151.
    1. Huzooree G., Khedo K.K., Joonas N. Body Area Network Challenges and Solutions. Springer; Berlin/Heidelberg, Germany: 2019. Data reliability and quality in body area networks for diabetes monitoring; pp. 55–86.
    1. Shirreffs S., Maughan R. Whole body sweat collection in humans: An improved method with preliminary data on electrolyte content. J. Appl. Physiol. 1997;82:336–341. doi: 10.1152/jappl.1997.82.1.336.
    1. Matzeu G., Fay C., Vaillant A., Coyle S., Diamond D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans. Biomed. Eng. 2015;63:1672–1680. doi: 10.1109/TBME.2015.2477676.
    1. Yuan Y., Wang Y., Wang H., Hou S. Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. 2019;855:113495. doi: 10.1016/j.jelechem.2019.113495.
    1. Yoon H., Xuan X., Jeong S., Park J.Y. Wearable, robust, non-enzymatic continuous glucose monitoring system and its in vivo investigation. Biosens. Bioelectron. 2018;117:267–275. doi: 10.1016/j.bios.2018.06.008.
    1. Grand View Research Wearable Technology Market Size Worth 104.39 Billion by 2027. [(accessed on 15 November 2021)]. Available online: .
    1. Grand View Research Healthcare Personal Protective Equipment Market Size, Share & Trends Analysis Report by Product (Respiratory, Hand Protection), by End-Use (Hospitals, Outpatient/Primary Care Facilities), and Segment Forecasts, 2021–2028. [(accessed on 15 November 2021)]. Available online: .
    1. BACtrack Skyn BACtrack Skyn Wearable Alcohol Monitor. [(accessed on 15 November 2021)]. Available online:
    1. Reliable Drug and Alcohol Testing Products Sweat Collection Patch for Drug Testing Developed. [(accessed on 15 November 2021)]. Available online:
    1. SCRAM Systems Transdermal Alcohol Monitoring. [(accessed on 15 November 2021)]. Available online:
    1. Macroduct The Macroduct Sweat Collection System. [(accessed on 15 November 2021)]. Available online: .
    1. Desax M., Ammann R., Hammer J., Schoeni M., Barben J. Nanoduct® sweat testing for rapid diagnosis in newborns, infants and children with cystic fibrosis. Eur. J. Pediatr. 2008;167:299–304. doi: 10.1007/s00431-007-0485-0.

Source: PubMed

3
Předplatit