The kinetic profiles of copeptin and mid regional proadrenomedullin (MR-proADM) in pediatric lower respiratory tract infections

Philipp Baumann, Aline Fuchs, Verena Gotta, Nicole Ritz, Gurli Baer, Jessica M Bonhoeffer, Michael Buettcher, Ulrich Heininger, Gabor Szinnai, Jan Bonhoeffer, ProPAED study group, Philipp Baumann, Aline Fuchs, Verena Gotta, Nicole Ritz, Gurli Baer, Jessica M Bonhoeffer, Michael Buettcher, Ulrich Heininger, Gabor Szinnai, Jan Bonhoeffer, ProPAED study group

Abstract

Background: Kinetics of copeptin and mid regional proadrenomedullin (MR-proADM) during febrile pediatric lower respiratory tract infections (LRTI) are unknown. We aimed to analyze kinetic profiles of copeptin and MR-proADM and the impact of clinical and laboratory factors on those biomarkers.

Methods: This is a retrospective post-hoc analysis of a randomized controlled trial, evaluating procalcitonin guidance for antibiotic treatment of LRTI (ProPAED-study). In 175 pediatric patients presenting to the emergency department plasma copeptin and MR-proADM concentrations were determined on day 1, 3, and 5. Their association with clinical characteristics and other inflammatory biomarkers were tested by non-linear mixed effect modelling.

Results: Median copeptin and MR-proADM values were elevated on day 1 and decreased during on day 3 and 5 (-26%; -34%, respectively). The initial concentrations of MR-proADM at inclusion were higher in patients receiving antibiotics intravenously compared to oral administration (difference 0.62 pmol/L, 95%CI 0.44;1.42, p<0.001). Intensive care unit (ICU) admission was associated with a daily increase of MR-proADM (increase/day 1.03 pmol/L, 95%CI 0.43;1.50, p<0.001). Positive blood culture in patients with antibiotic treatment and negative results on nasopharyngeal aspirates, or negative blood culture were associated with a decreasing MR-proADM (decrease/day -0.85 pmol/L, 95%CI -0.45;-1.44), p<0.001).

Conclusion: Elevated MR-proADM and increases thereof were associated with ICU admission suggesting the potential as a prognostic factor for severe pediatric LRTI. MR-proADM might only bear limited value for decision making on stopping antibiotics due to its slow decrease. Copeptin had no added value in our setting.

Conflict of interest statement

Copeptin proAVP and MR-proADM test kits were provided by B.R.A.H.M.S. There are no patents, products in development or marketed products associated with this research to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Copeptin and MR-proADM concentrations over…
Fig 1. Copeptin and MR-proADM concentrations over the study period.
Distribution and change in copeptin (pmol/L) and MR-proADM (nmol/L) concentrations for patients over 5 study days. Boxes represent the interquartile range (IQR). Solid lines are the median, 25th and 75th quantile and whiskers equal 25th quantile -1.5 IQR and 75th quantile +1.5 IQR.
Fig 2. Correlation between copeptin and MR-proADM…
Fig 2. Correlation between copeptin and MR-proADM concentrations and pro-and anti-inflammatory markers at study inclusion.
IL: interleukin; TNF: tumor necrosis factor; INF: interferon; IP-10: interferon-gamma induced protein 10 kD, CRP: c-reactive protein; PCT: procalcitonin; MR-proADM: mid regional proadrenomedullin.

References

    1. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al.. Global burden of childhood pneumonia and diarrhoea. The Lancet. 2013;381(9875):1405–16.
    1. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al.. Global, regional, and national causes of child mortality in 2008: a systematic analysis. The Lancet. 2010;375(9730):1969–87.
    1. Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al.. The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53(7):e25–e76. doi: 10.1093/cid/cir531
    1. Lemaître C, Angoulvant F, Gabor F, Makhoul J, Bonacorsi S, Naudin J, et al.. Necrotizing Pneumonia in Children: Report of 41 Cases Between 2006 and 2011 in a French Tertiary Care Center. Pediatr Infect Dis J. 2013;32(10):1146–9 doi: 10.1097/INF.0b013e31829be1bb
    1. Ashworth M, Charlton J, Latinovic R, Gulliford M. Age-related changes in consultations and antibiotic prescribing for acute respiratory infections, 1995–2000. Data from the UK General Practice Research Database. J Clin Pharm Ther. 2006;31(5):461–7. doi: 10.1111/j.1365-2710.2006.00765.x
    1. Cevey-Macherel M, Galetto-Lacour A, Gervaix A, Siegrist C-A, Bille J, Bescher-Ninet B, et al.. Etiology of community-acquired pneumonia in hospitalized children based on WHO clinical guidelines. Eur J Pediatr. 2009;168(12):1429–36. doi: 10.1007/s00431-009-0943-y
    1. Florin TA, Byczkowski T, Gerber JS, Ruddy R, Kuppermann N. Diagnostic Testing and Antibiotic Use in Young Children With Community-Acquired Pneumonia in the United States, 2008–2015. J Pediatric Infect Dis Soc. 2020;9(2):248–52. doi: 10.1093/jpids/piz026 .
    1. Esposito S, Tagliabue C, Picciolli I, Semino M, Sabatini C, Consolo S, et al.. Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir Med. 2011;105(12):1939–45. doi: 10.1016/j.rmed.2011.09.003
    1. Baer G, Baumann P, Buettcher M, Heininger U, Berthet G, Schäfer J, et al.. Procalcitonin Guidance to Reduce Antibiotic Treatment of Lower Respiratory Tract Infection in Children and Adolescents (ProPAED): A Randomized Controlled Trial. PLoS One. 2013;8(8):e68419. doi: 10.1371/journal.pone.0068419
    1. Stockmann C, Ampofo K, Killpack J, Williams DJ, Edwards KM, Grijalva CG, et al.. Procalcitonin Accurately Identifies Hospitalized Children With Low Risk of Bacterial Community-Acquired Pneumonia. J Pediatric Infect Dis Soc. 2017;7(1):46–53. doi: 10.1093/jpids/piw091
    1. Korppi M. Non-specific host response markers in the differentiation between pneumococcal and viral pneumonia: What is the most accurate combination? Pediatr Int. 2004;46(5):545–50. doi: 10.1111/j.1442-200x.2004.01947.x
    1. Flood RG, Badik J, Aronoff SC. The Utility of Serum C-Reactive Protein in Differentiating Bacterial from Nonbacterial Pneumonia in Children: A Meta-Analysis of 1230 Children. Pediatr Infect Dis J. 2008;27(2):95–9 doi: 10.1097/INF.0b013e318157aced
    1. Gotta V, Baumann P, Ritz N, Fuchs A, Baer G, Bonhoeffer JM, et al.. Drivers of antibiotic prescribing in children and adolescents with febrile lower respiratory tract infections. PLoS One. 2017;12(9):e0185197. doi: 10.1371/journal.pone.0185197
    1. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the Measurement of Copeptin, a Stable Peptide Derived from the Precursor of Vasopressin. Clin Chem. 2006;52(1):112–9. doi: 10.1373/clinchem.2005.060038
    1. Du J-M, Sang G, Jiang C-M, He X-J, Han Y. Relationship between plasma copeptin levels and complications of community-acquired pneumonia in preschool children. Peptides. 2013;45:61–5. doi: 10.1016/j.peptides.2013.04.015
    1. Mohamed GB, Saed MA, Abdelhakeem AA, Salah K, Saed AM. Predictive value of copeptin as a severity marker of community-acquired pneumonia. Electronic physician. 2017;9(7):4880–5. doi: 10.19082/4880 .
    1. Abdel-Fattah M, Meligy B, El-Sayed R, El-Naga YA. Serum Copeptin Level as a Predictor of Outcome in Pneumonia. Indian Pediatr. 2015;52(9):807–8. Epub 2015/11/01. doi: 10.1007/s13312-015-0723-x .
    1. Alcoba G, Manzano S, Lacroix L, Galetto-Lacour A, Gervaix A. Proadrenomedullin and copeptin in pediatric pneumonia: a prospective diagnostic accuracy study. BMC Infect Dis. 2015;15:347. doi: 10.1186/s12879-015-1095-5 ; PubMed Central PMCID: PMC4543464.
    1. Wrotek A, Jackowska T, Pawlik K. Sodium and Copeptin Levels in Children with Community Acquired Pneumonia. In: Pokorski M, editor. Respiratory Infections. Cham: Springer International Publishing; 2015. p. 31–6.
    1. Florin TA, Ambroggio L, Brokamp C, Zhang Y, Nylen ES, Rattan M, et al.. Proadrenomedullin Predicts Severe Disease in Children with Suspected Community-Acquired Pneumonia. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa1138
    1. Sardà Sánchez M, Hernández JC, Hernández-Bou S, Teruel GC, Rodríguez JV, Cubells CL. Pro-adrenomedullin usefulness in the management of children with community-acquired pneumonia, a preliminar prospective observational study. BMC Res Notes. 2012;5(1):363. doi: 10.1186/1756-0500-5-363
    1. Hartmann O, Schuetz P, Albrich WC, Anker SD, Mueller B, Schmidt T. Time-dependent Cox regression: Serial measurement of the cardiovascular biomarker proadrenomedullin improves survival prediction in patients with lower respiratory tract infection. Int J Cardiol. 2012;161(3):166–73. doi: 10.1016/j.ijcard.2012.09.014
    1. Harris M, Clark J, Coote N, Fletcher P, Harnden A, McKean M, et al.. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011;66(Suppl 2):ii1–ii23. doi: 10.1136/thoraxjnl-2011-200598
    1. Fuchs A, Gotta V, Marie L, Szinnai G, Baumann P, Bonhoeffer J, et al.. Cytokine kinetic profiles in children with acute lower respiratory tract infection: a post-hoc descriptive analysis from a randomized control trial. Clin Microbiol Infect. 2018. doi: 10.1016/j.cmi.2018.03.016 .
    1. History Bernstein D. and Examination Physical. In: Behrman R, Kliegman R, Jenson H, editors. Nelson Textbook of Pediatrics. 17th ed. Philadelphia: Saunders; 2004. p. 1481.
    1. Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, et al.. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet. 2011;377(9770):1011–8. doi: 10.1016/S0140-6736(10)62226-X
    1. Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, et al.. Effect of Procalcitonin-Based Guidelines vs Standard Guidelines on Antibiotic Use in Lower Respiratory Tract Infections: The ProHOSP Randomized Controlled Trial. JAMA. 2009;302(10):1059–66. doi: 10.1001/jama.2009.1297
    1. Fenske WK, Schnyder I, Koch G, Walti C, Pfister M, Kopp P, et al.. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers. The Journal of Clinical Endocrinology & Metabolism. 2018;103(2):505–13. doi: 10.1210/jc.2017-01891
    1. Urwyler SA, Schuetz P, Sailer C, Christ-Crain M. Copeptin as a stress marker prior and after a written examination–the CoEXAM study. Stress. 2015;18(1):134–7. doi: 10.3109/10253890.2014.993966
    1. Lin C, Wang N, Shen Z-P, Zhao Z-Y. Plasma copeptin concentration and outcome after pediatric traumatic brain injury. Peptides. 2013;42:43–7. doi: 10.1016/j.peptides.2013.01.015
    1. Lee J, Chan Y, Lai O, Puthucheary J. Vasopressin and copeptin levels in children with sepsis and septic shock. Intensive Care Med. 2013;39(4):747–53. doi: 10.1007/s00134-013-2825-z
    1. Szinnai G, Morgenthaler NG, Berneis K, Struck J, Müller B, Keller U, et al.. Changes in Plasma Copeptin, the C-Terminal Portion of Arginine Vasopressin during Water Deprivation and Excess in Healthy Subjects. The Journal of Clinical Endocrinology & Metabolism. 2007;92(10):3973–8. doi: 10.1210/jc.2007-0232 .
    1. Katan M, Morgenthaler N, Widmer I, Puder JJ, Konig C, Muller B, et al.. Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol Lett. 2008;29(3):341–6. Epub 2008/06/27. .
    1. Burckhardt M-A, Wellmann M, Fouzas S, Lapaire O, Burkhardt T, Benzing J, et al.. Sexual Disparity of Copeptin in Healthy Newborn Infants. The Journal of Clinical Endocrinology & Metabolism. 2014;99(9):E1750–E3. doi: 10.1210/jc.2014-2244
    1. Michels M, Djamiatun K, Faradz SMH, Koenders MMJF, de Mast Q, van der Ven AJAM. High plasma mid-regional pro-adrenomedullin levels in children with severe dengue virus infections. J Clin Virol. 2011;50(1):8–12. doi: 10.1016/j.jcv.2010.09.008
    1. Hauser JA, Demyanets S, Rusai K, Goritschan C, Weber M, Panesar D, et al.. Diagnostic performance and reference values of novel biomarkers of paediatric heart failure. Heart. 2016;102(20):1633–9. doi: 10.1136/heartjnl-2016-309460
    1. Wong LY, Cheung BM, Li YY, Tang F. Adrenomedullin is both proinflammatory and antiinflammatory: its effects on gene expression and secretion of cytokines and macrophage migration inhibitory factor in NR8383 macrophage cell line. Endocrinology. 2005;146(3):1321–7. doi: 10.1210/en.2004-1080 .
    1. Elsasser TH, Kahl S. Adrenomedullin has multiple roles in disease stress: development and remission of the inflammatory response. Microsc Res Tech. 2002;57(2):120–9. doi: 10.1002/jemt.10058 .
    1. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T, et al.. Interleukin-1, tumor necrosis factor and lipopolysaccharide additively stimulate production of adrenomedullin in vascular smooth muscle cells. Biochem Biophys Res Commun. 1995;207(1):25–32. doi: 10.1006/bbrc.1995.1148 .

Source: PubMed

3
Předplatit