Neuroprotective effects of testosterone treatment in men with multiple sclerosis

Florian Kurth, Eileen Luders, Nancy L Sicotte, Christian Gaser, Barbara S Giesser, Ronald S Swerdloff, Michael J Montag, Rhonda R Voskuhl, Allan Mackenzie-Graham, Florian Kurth, Eileen Luders, Nancy L Sicotte, Christian Gaser, Barbara S Giesser, Ronald S Swerdloff, Michael J Montag, Rhonda R Voskuhl, Allan Mackenzie-Graham

Abstract

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system. While current medication reduces relapses and inflammatory activity, it has only a modest effect on long-term disability and gray matter atrophy. Here, we have characterized the potential neuroprotective effects of testosterone on cerebral gray matter in a pilot clinical trial. Ten men with relapsing-remitting MS were included in this open-label phase II trial. Subjects were observed without treatment for 6 months, followed by testosterone treatment for another 12 months. Focal gray matter loss as a marker for neurodegeneration was assessed using voxel-based morphometry. During the non-treatment phase, significant voxel-wise gray matter decreases were widespread (p≤ 0.05 corrected). However, during testosterone treatment, gray matter loss was no longer evident. In fact, a significant gray matter increase in the right frontal cortex was observed (p≤ 0.05 corrected). These observations support the potential of testosterone treatment to stall (and perhaps even reverse) neurodegeneration associated with MS. Furthermore, they warrant the investigation of testosterone's neuroprotective effects in larger, placebo controlled MS trials as well as in other neurodegenerative diseases. This is the first report of gray matter increase as the result of treatment in MS.

Figures

Fig. 1
Fig. 1
Regional gray matter volume increase in testosterone treated men with MS. (a) Significant gray matter changes during the observation phase, (b) the transition phase, and (c) the protection phase, threshold at p≤ 0.05, FWE-corrected for multiple comparisons. Displayed are maximum intensity projections superimposed onto the SPM standard glass brain together with a rendering onto the mean template. Decreases are shown in blue, increases in red. Note the significant gray matter increase (accompanied by a lack of significant gray matter decrease) during the protection phase.
Fig. 2
Fig. 2
Regional volume changes over time. (a) Regional GM decreases during the observation phase. Heat maps visualize regional differences in the level of significance, thresholded at p≤ 0.05, FWE-corrected for multiple comparisons. (b) The widespread GM decreases seen during the observation phase (P1) were arrested during testosterone treatment (P2 and P3). No GM decrease was observed during the protection phase (P3). (c) Regional GM increases during the protection phase. Heat maps visualize regional differences in the level of significance. (d) In this cluster, testosterone treatment resulted in a GM increase during the protection phase (P3), which locally reversed the GM loss observed before treatment (P1).

References

    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Bach M.E., Hawkins R.D., Osman M., Kandel E.R., Mayford M. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 1995;81:905–915. doi: 10.1016/0092-8674(95)90010-1.
    1. Bebo B.F., Jr., Schuster J.C., Vandenbark A.A., Offner H. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. Journal of Immunology. 1999;162:35–40.
    1. Bendfeldt K., Kuster P., Traud S., Egger H., Winklhofer S., Mueller-Lenke N., Naegelin Y., Gass A., Kappos L., Matthews P.M., Nichols T.E., Radue E.W., Borgwardt S.J. Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis — a longitudinal voxel-based morphometry study. Neuroimage. 2009;45:60–67. doi: 10.1016/j.neuroimage.2008.10.006.
    1. Bezzola L., Mérillat S., Gaser C., Jäncke L. Training-induced neural plasticity in golf novices. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31:12444–12448. doi: 10.1523/JNEUROSCI.1996-11.2011.
    1. B⊘ L. The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurologica Scandinavica. Supplementum. 2009:51–57.
    1. Boyke J., Driemeyer J., Gaser C., Buchel C., May A. Training-induced brain structure changes in the elderly. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2008;28:7031–7035. doi: 10.1523/JNEUROSCI.0742-08.2008.
    1. Brex P.A., Ciccarelli O., O'Riordan J.I., Sailer M., Thompson A.J., Miller D.H. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. New England Journal of Medicine. 2002;346:158–164. doi: 10.1056/NEJMoa011341.
    1. Byers J.S., Huguenard A.L., Kuruppu D., Liu N.K., Xu X.M., Sengelaub D.R. Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. Journal of Comparative Neurology. 2012;520:2683–2696. doi: 10.1002/cne.23066.
    1. Cabeza R., Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience. 2000;12:1–47. doi: 10.1162/08989290051137585.
    1. Carroll J.C., Rosario E.R. The potential use of hormone-based therapeutics for the treatment of Alzheimer's disease. Current Alzheimer Research. 2012;9:18–34. doi: 10.2174/156720512799015109.
    1. Ceccarelli A., Jackson J.S., Tauhid S., Arora A., Gorky J., Dell'Oglio E., Bakshi A., Chitnis T., Khoury S.J., Weiner H.L., Guttmann C.R., Bakshi R., Neema M. The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR. American Journal of Neuroradiology. 2012;33:1579–1585. doi: 10.3174/ajnr.A3083.
    1. Chard D.T., Griffin C.M., Rashid W., Davies G.R., Altmann D.R., Kapoor R., Barker G.J., Thompson A.J., Miller D.H. Progressive grey matter atrophy in clinically early relapsing–remitting multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England) 2004;10:387–391. doi: 10.1191/1352458504ms1050oa.
    1. Chard D.T., Jackson J.S., Miller D.H., Wheeler-Kingshott C.A. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. Journal of Magnetic Resonance Imaging: JMRI. 2010;32:223–228. doi: 10.1002/jmri.22214.
    1. Chen J.T., Narayanan S., Collins D.L., Smith S.M., Matthews P.M., Arnold D.L. Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage. 2004;23:1168–1175. doi: 10.1016/j.neuroimage.2004.07.046.
    1. Cuadra M.B., Cammoun L., Butz T., Cuisenaire O., Thiran J.P. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical imaging. 2005;24:1548–1565. doi: 10.1109/TMI.2005.857652.
    1. Dalal M., Kim S., Voskuhl R.R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. Journal of Immunology. 1997;159:3–6.
    1. Dalton C.M., Chard D.T., Davies G.R., Miszkiel K.A., Altmann D.R., Fernando K., Plant G.T., Thompson A.J., Miller D.H. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain : a Journal of Neurology. 2004;127:1101–1107. doi: 10.1093/brain/awh126.
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–312. doi: 10.1038/427311a.
    1. Draganski B., Gaser C., Kempermann G., Kuhn H.G., Winkler J., Büchel C., May A. Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2006;26:6314–6317. doi: 10.1523/JNEUROSCI.4628-05.2006.
    1. Fisher E., Lee J.C., Nakamura K., Rudick R.A. Gray matter atrophy in multiple sclerosis: a longitudinal study. Annals of Neurology. 2008;64:255–265. doi: 10.1002/ana.21436.
    1. Gold S.M., Voskuhl R.R. Estrogen and testosterone therapies in multiple sclerosis. Progress in Brain Research. 2009;175:239–251. doi: 10.1016/S0079-6123(09)17516-7.
    1. Grassiot B., Desgranges B., Eustache F., Defer G. Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review. Journal of Neurology. 2009;256:1397–1412. doi: 10.1007/s00415-009-5108-4.
    1. Hardmeier M., Wagenpfeil S., Freitag P., Fisher E., Rudick R.A., Kooijmans M., Clanet M., Radue E.W., Kappos L. Rate of brain atrophy in relapsing MS decreases during treatment with IFNbeta-1a. Neurology. 2005;64:236–240. doi: 10.1212/01.WNL.0000149516.30155.B8.
    1. Healy B., Valsasina P., Filippi M., Bakshi R. Sample size requirements for treatment effects using gray matter, white matter and whole brain volume in relapsing–remitting multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry. 2009;80:1218–1223. doi: 10.1136/jnnp.2008.154732.
    1. Hussain R., Ghoumari A.M., Bielecki B., Steibel J., Boehm N., Liere P., Macklin W.B., Kumar N., Habert R., Mhaouty-Kodja S., Tronche F., Sitruk-Ware R., Schumacher M., Ghandour M.S. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain : a Journal of Neurology. 2013;136:132–146. doi: 10.1093/brain/aws284.
    1. Luders E., Gaser C., Narr K.L., Toga A.W. Why sex matters: brain size independent differences in gray matter distributions between men and women. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2009;29:14265–14270. doi: 10.1523/JNEUROSCI.2261-09.2009.
    1. Luders E., Kurth F., Toga A.W., Narr K.L., Gaser C. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Frontiers in Psychology. 2013;4:398.
    1. Manjón J.V., Coupé P., Martí-Bonmatí L., Collins D.L., Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging: JMRI. 2010;31:192–203. doi: 10.1002/jmri.22003.
    1. Miller D.H., Soon D., Fernando K.T., MacManus D.G., Barker G.J., Yousry T.A., Fisher E., O'Connor P.W., Phillips J.T., Polman C.H., Kappos L., Hutchinson M., Havrdova E., Lublin F.D., Giovannoni G., Wajgt A., Rudick R., Lynn F., Panzara M.A., Sandrock A.W. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68:1390–1401. doi: 10.1212/01.wnl.0000260064.77700.fd.
    1. Ontaneda D., Hyland M., Cohen J.A. Multiple sclerosis: new insights in pathogenesis and novel therapeutics. Annual Review of Medicine. 2012;63:389–404. doi: 10.1146/annurev-med-042910-135833.
    1. Pompl P.N., Mullan M.J., Bjugstad K., Arendash G.W. Adaptation of the circular platform spatial memory task for mice: use in detecting cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer's disease. Journal of Neuroscience Methods. 1999;87:87–95. doi: 10.1016/S0165-0270(98)00169-1.
    1. Prinster A., Quarantelli M., Orefice G., Lanzillo R., Brunetti A., Mollica C., Salvatore E., Morra V.B., Coppola G., Vacca G., Alfano B., Salvatore M. Grey matter loss in relapsing–remitting multiple sclerosis: a voxel-based morphometry study. Neuroimage. 2006;29:859–867. doi: 10.1016/j.neuroimage.2005.08.034.
    1. Rajapakse J.C., Giedd J.N., Rapoport J.L. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Transactions on Medical imaging. 1997;16:176–186. doi: 10.1109/42.563663.
    1. Ransome M.I. Androgen function in the pathophysiology and treatment of male Huntington's disease patients. Journal of Neuroendocrinology. 2012;24:1275–1283. doi: 10.1111/j.1365-2826.2012.02347.x.
    1. Rao A.B., Richert N., Howard T., Lewis B.K., Bash C.N., McFarland H.F., Frank J.A. Methylprednisolone effect on brain volume and enhancing lesions in MS before and during IFNbeta-1b. Neurology. 2002;59:688–694. doi: 10.1212/WNL.59.5.688.
    1. Rudick R.A., Trapp B.D. Gray-matter injury in multiple sclerosis. New England Journal of Medicine. 2009;361:1505–1506. doi: 10.1056/NEJMcibr0905482.
    1. Schmidt P., Gaser C., Arsic M., Buck D., Förschler A., Berthele A., Hoshi M., Ilg R., Schmid V.J., Zimmer C., Hemmer B., Mühlau M. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage. 2012;59:3774–3783. doi: 10.1016/j.neuroimage.2011.11.032.
    1. Seeger T., Fedorova I., Zheng F., Miyakawa T., Koustova E., Gomeza J., Basile A.S., Alzheimer C., Wess J. M2 muscarinic acetylcholine receptor knockout mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2004;24:10117–10127. doi: 10.1523/JNEUROSCI.3581-04.2004.
    1. Shattuck D.W., Leahy R.M. BrainSuite: an automated cortical surface identification tool. Medical image Analysis. 2002;6:129–142. doi: 10.1016/S1361-8415(02)00054-3.
    1. Sicotte N.L., Giesser B.S., Tandon V., Klutch R., Steiner B., Drain A.E., Shattuck D.W., Hull L., Wang H.J., Elashoff R.M., Swerdloff R.S., Voskuhl R.R. Testosterone treatment in multiple sclerosis: a pilot study. Archives of Neurology. 2007;64:683–688. doi: 10.1001/archneur.64.5.683.
    1. Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E., Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., Flitney D.E., Niazy R.K., Saunders J., Vickers J., Zhang Y., De Stefano N., Brady J.M., Matthews P.M. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl. 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., De Stefano N. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17:479–489. doi: 10.1006/nimg.2002.1040.
    1. Swerdloff R.S., Wang C. Androgens and the ageing male. Best Practice & Research. Clinical Endocrinology & Metabolism. 2004;18:349–362. doi: 10.1016/j.beem.2004.03.011.
    1. Tiberio M., Chard D.T., Altmann D.R., Davies G., Griffin C.M., Rashid W., Sastre-Garriga J., Thompson A.J., Miller D.H. Gray and white matter volume changes in early RRMS: a 2-year longitudinal study. Neurology. 2005;64:1001–1007. doi: 10.1212/01.WNL.0000154526.22878.30.
    1. Tohka J., Zijdenbos A., Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage. 2004;23:84–97. doi: 10.1016/j.neuroimage.2004.05.007.
    1. Vigeveno R.M., Wiebenga O.T., Wattjes M.P., Geurts J.J., Barkhof F. Shifting imaging targets in multiple sclerosis: from inflammation to neurodegeneration. Journal of Magnetic Resonance Imaging: JMRI. 2012;36:1–19. doi: 10.1002/jmri.23578.
    1. Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Transactions on Medical imaging. 2001;20:45–57. doi: 10.1109/42.906424.
    1. Ziehn M.O., Avedisian A.A., Dervin S.M., Umeda E.A., O'Dell T.J., Voskuhl R.R. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2012;32:12312–12324. doi: 10.1523/JNEUROSCI.2796-12.2012.

Source: PubMed

3
Předplatit