Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies

Thomas Koeglsperger, Carla Palleis, Franz Hell, Jan H Mehrkens, Kai Bötzel, Thomas Koeglsperger, Carla Palleis, Franz Hell, Jan H Mehrkens, Kai Bötzel

Abstract

Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).

Keywords: DBS programming algorithms; DBS side effects; segmented electrode; short pulse width; subthalamic nucleus.

Figures

Figure 1
Figure 1
The therapeutic window depends on stimulation parameters and the electrode configuration. In tripartite electrodes, the therapeutic window should be determined for each segment individually by examining the beneficial and adverse effects with increasing the stimulation amplitude under defined pulse width and frequency (A). The therapeutic window in DBS is defined as the gap between the minimum stimulation current required to produce adverse effects and the current required to produce a beneficial effect. Similar to pharmacologic intervention, DSB is a tradeoff between beneficial and adverse effects. Numerous stimulation parameters, as well as the anatomical position of the respective contact, affect the therapeutic window. As a consequence, each electrode contact and each combination of pulse width and frequency thus has an individual therapeutic window (B).
Figure 2
Figure 2
The effects of DBS on clinical symptoms are time-dependent. PD signs and symptoms respond to STN-DBS variably. Axial symptoms may take hours or days to improve, whereas tremor typically disappears almost instantly with STN- or VIM-DBS (A). A similar temporal disparity occurs with dystonia, where phasic dystonic symptoms respond quickly within minutes to GPi-DBS, and tonic dystonic movements may take much longer to resolve (B). The reappearance of symptoms after discontinuation of DBS exhibits a similar temporal pattern.
Figure 3
Figure 3
Anatomical relationship of the subthalamic nucleus (STN) and the ventral intermedius nucleus (VIM) to adjacent structures. The schematic shows coronar (A–C) and sagittal (D) planes through the basal ganglia at the level of the STN and VIM. Co, Commissural nucleus; CeM, central medial thalamic nucleus; VA, ventroanterior thalamic nucleus; VC, ventrocaudal nucleus; VLP, ventrolateral posterior thalamic nucleus; VPM, ventroposterior medial thalamic nucleus; IC, internal capsule; SNr, Substantia nigra pars reticulate; and SNc compacta; H1, H2, H1 and H2 Fields of Forel; ZI, zona incerta; N.III, nucleus of the third cranial nerve; DHA, dorsal hypothalamic area; DHM, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamic area; mfb, medial forebrain bundle; opt, optic tracts; RN, red nucleus; crt, cerebello-rubro-thalamic tract. Stimulating the tissue medial and dorsal to the STN activates the H1 and H2 fields of Forel and the ZI and may reach to the medio-dorsal thalamic nuclei incl. the Co, CeM, and VIM. Deflection of the field to more ventral areas will activate the fibers of the N.III and the SN (A). Anterior of the STN, stimulation may activate hypothalamic nuclei and mfb as well as the IC (B,D). At the posterior border of the STN, stimulation may activate the RN and ml, in particular, if the tissue medial of the STN is activated. Stimulation of tissue dorsal of the STN may activate the crt. (C,D). Adjusted from Mai et al. (55).
Figure 4
Figure 4
Anatomical relationship of the globus pallidus internus (GPi) to adjacent structures. The schematic shows coronar (A–C) and sagittal (D) planes through the basal ganglia at the level of the GPi. IC, internal capsule; GPe, globus pallidus externus; al, ansa lenticularis; Pu, putamen; opt, optic tract; AMY, amygdala; VP, ventral pallidum; PuV, ventral putamen; STN, subthalamic nucleus. Deflection of stimulation to tissue medial of the GPi will activate the IC, which is less likely the case at the anterior border of the GPi (A,B,D). The AMY and opt are activated by stimulating tissue ventral of the GPi (C). Adjusted from Mai et al. (55).

References

    1. Cooper IS, Upton AR, Amin I. Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man. Appl Neurophysiol. (1980) 43:244–58.
    1. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. . Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. (1991) 337:403–6.
    1. Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Mov Disord. (2006) 21(Suppl. 14):S284–9. 10.1002/mds.20961
    1. Walter BL, Vitek JL. Surgical treatment for Parkinson's disease. Lancet Neurol. (2004) 3:719–28. 10.1016/S1474-4422(04)00934-2
    1. Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid A-L. Deep brain stimulation for Parkinson's disease: Surgical technique and perioperative management. Mov Disord. (2006) 21:S247–58. 10.1002/mds.20959
    1. Mobin F, De Salles AA, Behnke EJ, Frysinger R. Correlation between MRI-based stereotactic thalamic deep brain stimulation electrode placement, macroelectrode stimulation and clinical response to tremor control. Stereotact Funct Neurosurg. (1999) 72:225–32. 10.1159/000029730
    1. Patel NK, Plaha P, O'Sullivan K, McCarter R, Heywood P, Gill SS. MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease. J Neurol Neurosurg Psychiatr. (2003) 74:1631–7. 10.1136/jnnp.74.12.1631
    1. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. (2013) 119:301–6. 10.3171/2013.4.JNS122324
    1. Langsdorff von D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. (2015) 122:191–4. 10.3171/2014.9.JNS14256
    1. Lefranc M, Capel C, Pruvot AS, Fichten A, Desenclos C, Toussaint P, et al. . The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA® stereotactic robot. Stereotact Funct Neurosurg. (2014) 92:242–50. 10.1159/000362936
    1. D'Haese P-F, Pallavaram S, Konrad PE, Neimat J, Fitzpatrick JM, Dawant BM. Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact Funct Neurosurg. (2010) 88:81–7. 10.1159/000271823
    1. Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. (2007) 85:235–42. 10.1159/000103262
    1. Winkler D. The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatr. (2005) 76:1161–3. 10.1136/jnnp.2004.047373
    1. Khan MF, Mewes K, Gross RE, Škrinjar O. Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg. (2007) 86:44–53. 10.1159/000108588
    1. Hunsche S, Sauner D, Maarouf M, Poggenborg JOR, Lackner K, Sturm V, et al. . Intraoperative X-ray detection and mri-based quantification of brain shift effects subsequent to implantation of the first electrode in bilateral implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg. (2009) 87:322–9. 10.1159/000235804
    1. Fazl A, Pourfar MH, Mogilner A. Rescue leads for suboptimal results following deep brain stimulation for Parkinson's disease. Brain Stimul. (2017) 10:462 10.1016/j.brs.2017.01.354
    1. Nagy AM, Tolleson CM. Rescue procedures after suboptimal deep brain stimulation outcomes in common movement disorders. Brain Sci. (2016) 6:46. 10.3390/brainsci6040046
    1. Guridi J, Rodriguez-Oroz MC, Lozano AM, Moro E, Albanese A, Nuttin B, et al. . Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology. (2000) 55:S21–8.
    1. Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. . Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. (2005) 62:1250–5. 10.1001/archneur.62.8.noc40425
    1. Rolston JD, Englot DJ, Starr PA, Larson PS. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: analysis of multiple databases. Parkinsonism Relat Disord. (2016) 33:72–7. 10.1016/j.parkreldis.2016.09.014
    1. Kuncel AM, Grill WM. Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol. (2004) 115:2431–41. 10.1016/j.clinph.2004.05.031
    1. Moro E, Poon Y-YW, Lozano AM, Saint-Cyr JA, Lang AE. Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch Neurol. (2006) 63:1266–72. 10.1001/archneur.63.9.1266
    1. Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, et al. . Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatr. (2001) 71:215–9. 10.1136/jnnp.71.2.215
    1. Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology. (2002) 59:706–13.
    1. Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming deep brain stimulation for Parkinson's disease: the toronto western hospital algorithms. Brain Stimul. (2016) 9:425–37. 10.1016/j.brs.2016.02.004
    1. Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. Programming deep brain stimulation for tremor and dystonia: the toronto western hospital algorithms. Brain Stimul. (2016) 9:438–52. 10.1016/j.brs.2016.02.003
    1. Volkmann J, Herzog J, Kopper F, Deuschl G. Introduction to the programming of deep brain stimulators. Mov Disord. (2002) 17(Suppl. 3):S181–7. 10.1002/mds.10162
    1. Hunka K, Suchowersky O, Wood S, Derwent L, Kiss ZHT. Nursing time to program and assess deep brain stimulators in movement disorder patients. J Neurosci Nurs. (2005) 37:204–10. 10.1097/01376517-200508000-00006
    1. Amon A, Alesch F. Systems for deep brain stimulation: review of technical features. J Neural Transm. (2017) 124:1083–91. 10.1007/s00702-017-1751-6
    1. McIntyre CC, Anderson RW. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J Neurochem. (2016) 139:338–45. 10.1111/jnc.13649
    1. Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. (2013) 77:406–24. 10.1016/j.neuron.2013.01.020
    1. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. . Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. (2011) 68:165. 10.1001/archneurol.2010.260
    1. Temperli P, Ghika J, Villemure J-G, Burkhard PR, Bogousslavsky J, Vingerhoets FJG. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. (2003) 60:78–81.
    1. Hristova A, Lyons K, Troster AI, Pahwa R, Wilkinson SB, Koller WC. Effect and time course of deep brain stimulation of the globus pallidus and subthalamus on motor features of Parkinson's disease. Clin Neuropharmacol. (2000) 23:208–11. 10.1097/00002826-200007000-00007
    1. Levin J, Krafczyk S, Valkovic P, Eggert T, Claassen J, Bötzel K. Objective measurement of muscle rigidity in Parkinsonian patients treated with subthalamic stimulation. Mov Disord. (2009) 24:57–63. 10.1002/mds.22291
    1. Defer GL, Widner H, Marié RM, Rémy P, Levivier M. Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD). Mov Disord. (1999) 572–84.
    1. Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, et al. . Deep brain stimulation: postoperative issues. Mov Disord. (2006) 21(Suppl. 14):219–37. 10.1002/mds.20957
    1. Dembek TA, Reker P, Visser Vandewalle V, Wirths J, Treuer H, Klehr M, et al. . Directional DBS increases side-effect thresholds-A prospective, double-blind trial. Mov Disord. (2017) 32:1380–8. 10.1002/mds.27093
    1. Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, et al. . Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. (2014) 137:2015–26. 10.1093/brain/awu102
    1. Reker P, Dembek TA, Becker J, Visser Vandewalle V, Timmermann L. Directional deep brain stimulation: a case of avoiding dysarthria with bipolar directional current steering. Parkinsonism Relat Disord. (2016) 31:156–8. 10.1016/j.parkreldis.2016.08.007
    1. Contarino MF, Bour LJ, Verhagen R, Lourens MAJ, de Bie RMA, van den Munckhof P, et al. . Directional steering: a novel approach to deep brain stimulation. Neurology. (2014) 83:1163–9. 10.1212/WNL.0000000000000823
    1. Volkmann J, Chabardes S, Steinke GK, Carcieri S. 375 DIRECT DBS: a prospective, multicenter clinical trial with blinding for a directional deep brain stimulation lead. Neurosurgery. (2016) 63(Suppl. 1):211–2. 10.1227/01.neu.0000489863.00935.ea
    1. Schüpbach WMM, Chabardes S, Matthies C, Pollo C, Steigerwald F, Timmermann L, et al. . Directional leads for deep brain stimulation: opportunities and challenges. Mov Disord. (2017) 32:1371–5. 10.1002/mds.27096
    1. Rebelo P, Green AL, Aziz TZ, Kent A, Schafer D, Venkatesan L, et al. . Thalamic directional deep brain stimulation for tremor: spend less, get more. Brain Stimul. (2018) 11:600–6. 10.1016/j.brs.2017.12.015
    1. Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, et al. . Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. (2015) 14:693–701. 10.1016/S1474-4422(15)00087-3
    1. Sauleau P, Raoul S, Lallement F, Rivier I, Drapier S, Lajat Y, et al. . Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson's disease. J Neurol. (2005) 252:457–64. 10.1007/s00415-005-0675-5
    1. Miocinovic S, Khemani P, Whiddon R, Zeilman P, Martinez-Ramirez D, et al. . Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord. (2014) 20:1434–7. 10.1016/j.parkreldis.2014.10.011
    1. Timmermann L, Wojtecki L, Gross J, Lehrke R, Voges J, Maarouf M, et al. . Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson's disease. Mov Disord. (2004) 19:1328–33. 10.1002/mds.20198
    1. Eusebio A, Chen CC, Lu CS, Lee ST, Tsai CH, Limousin P, et al. . Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson's disease. Exper Neurol. (2008) 209:125–30. 10.1016/j.expneurol.2007.09.007
    1. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, et al. . Bilateral subthalamic nucleus stimulation for severe Parkinson's disease. Mov Disord. (1995) 10:672–4. 10.1002/mds.870100523
    1. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. . Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. (1998) 339:1105–11. 10.1056/NEJM199810153391603
    1. Krack P, Pollak P, Limousin P, Benazzouz A, Deuschl G, Benabid AL. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain. (1999) 122(Pt 6):1133–46.
    1. Steigerwald F, Timmermann L, Kuhn A, Schnitzler A, Reich MM, Kirsch AD, et al. . Pulse duration settings in subthalamic stimulation for Parkinson's disease. Mov Disord. (2017) 33:165–9. 10.1002/mds.27238
    1. Dayal V, Grover T, Limousin P, Akram H, Cappon D, Candelario J, et al. . The effect of short pulse width settings on the therapeutic window in subthalamic nucleus deep brain stimulation for Parkinson's disease. J Parkinsons Dis. (2018) 8:273–9. 10.3233/JPD-171272
    1. Mai JK, Majtanik M, Paxinos G. Atlas of the Human Brain. San Diego, CA: Academic Press; (2015).
    1. Güngör A, Baydin SS, Holanda VM, Middlebrooks EH, Isler C, Tugcu B, et al. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. J Neurosurg. (2018) 8:1–17. 10.3171/2017.10.JNS171513
    1. Benarroch EE. Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology. (2008) 70:1991–5. 10.1212/01.wnl.0000313022.39329.65
    1. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, et al. . Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Mov Disord. (2004) 19:1050–4. 10.1002/mds.20056
    1. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L. Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatr. (2002) 72:53–8. 10.1136/jnnp.72.1.53
    1. Saint-Cyr JA, Hoque T, Pereira LCM, Dostrovsky JO, Hutchison WD, Mikulis DJ, et al. . Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg. (2002) 97:1152–66. 10.3171/jns.2002.97.5.1152
    1. Zheng Z, Zhang Y-Q, Li J-Y, Zhang X-H, Zhuang P, Li Y-J. Subthalamic deep brain stimulation for Parkinson's disease: correlation of active contacts and electrophysiologically mapped subthalamic nucleus. Chin Med J. (2009) 122:2419–22.
    1. Zonenshayn M, Sterio D, Kelly PJ, Rezai AR, Beric A. Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease. Surg Neurol. (2004) 62:216–25; discussion: 225–6. 10.1016/j.surneu.2003.09.039
    1. Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodriguez-Oroz MC. Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson's disease: a new approach for active contact localization. J Neurosurg. (2016) 125:1068–79. 10.3171/2015.9.JNS15868
    1. Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, et al. . Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord. (2012) 27:874–79. 10.1002/mds.25006
    1. Coenen VA, Honey CR, Hurwitz T, Rahman AA, McMaster J, Bürgel U, et al. . Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson's disease. Neurosurgery. (2009) 64:1106–14; discussion: 1114–5. 10.1227/01.NEU.0000345631.54446.06
    1. Krack P, Kumar R, Ardouin C, Dowsey PL, McVicker JM, Benabid AL, et al. . Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord. (2001) 16:867–75. 10.1002/mds.1174
    1. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schüpbach M, et al. . A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Brain. (2008) 131:2720–8. 10.1093/brain/awn214
    1. Herzog J, Reiff J, Krack P, Witt K, Schrader B, Müller D, et al. . Manic episode with psychotic symptoms induced by subthalamic nucleus stimulation in a patient with Parkinson's disease. Mov Disord. (2003) 18:1382–4. 10.1002/mds.10530
    1. Eisenstein SA, Koller JM, Black KD, Campbell MC, Lugar HM, Ushe M, et al. . Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann Neurol. (2014) 76:279–95. 10.1002/ana.24204
    1. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund H-J, et al. . Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg. (2002) 96:269–79. 10.3171/jns.2002.96.2.0269
    1. Godinho F, Thobois S, Magnin M, Guenot M, Polo G, Benatru I, et al. . Subthalamic nucleus stimulation in Parkinson's disease : anatomical and electrophysiological localization of active contacts. J Neurol. (2006) 253:1347–55. 10.1007/s00415-006-0222-z
    1. Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, et al. . Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatr. (2003) 74:1036–46. 10.1136/jnnp.74.8.1036
    1. Johnsen EL, Sunde N, Mogensen PH, Ostergaard K. MRI verified STN stimulation site–gait improvement and clinical outcome. Eur J Neurol. (2010) 17:746–53. 10.1111/j.1468-1331.2010.02962.x
    1. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. (2006) 129:1732–47. 10.1093/brain/awl127
    1. Vergani F, Landi A, Antonini A, Parolin M, Cilia R, Grimaldi M, et al. . Anatomical identification of active contacts in subthalamic deep brain stimulation. Surg Neurol. (2007) 67:140–6; discussion: 146–7. 10.1016/j.surneu.2006.06.054
    1. Yokoyama T, Sugiyama K, Nishizawa S, Yokota N, Ohta S, Akamine S, et al. . The optimal stimulation site for chronic stimulation of the subthalamic nucleus in Parkinson's disease. Stereotact Funct Neurosurg. (2001) 77:61–7. 10.1159/000064598
    1. Weise LM, Seifried C, Eibach S, Gasser T, Roeper J, Seifert V, et al. . Correlation of active contact positions with the electrophysiological and anatomical subdivisions of the subthalamic nucleus in deep brain stimulation. Stereotact Funct Neurosurg. (2013) 91:298–305. 10.1159/000345259
    1. Caire F, Ranoux D, Guehl D, Burbaud P, Cuny E. A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease. Acta Neurochir. (2013) 155:1647–54; discussion: 1654. 10.1007/s00701-013-1782-1
    1. Tommasi G, Krack P, Fraix V, Le Bas J-F, Chabardes S, Benabid AL, et al. . Pyramidal tract side effects induced by deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatr. (2008) 79:813–9. 10.1136/jnnp.2007.117507
    1. Gorgulho AA, Shields DC, Malkasian D, Behnke E, Desalles AAF. Stereotactic coordinates associated with facial musculature contraction during high-frequency stimulation of the subthalamic nucleus. J Neurosurg. (2009) 110:1317–21. 10.3171/JNS.2008.10.JNS08835
    1. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol. (2004) 115:589–95. 10.1016/j.clinph.2003.10.033
    1. Leichnetz GR. The prefrontal cortico-oculomotor trajectories in the monkey. J Neurol Sci. (1981) 49:387–96.
    1. Shields DC, Gorgulho A, Behnke E, Malkasian D, Desalles AAF. Contralateral conjugate eye deviation during deep brain stimulation of the subthalamic nucleus. J Neurosurg. (2007) 107:37–42. 10.3171/JNS-07/07/0037
    1. Sauleau P, Pollak P, Krack P, Courjon J-H, Vighetto A, Benabid A-L, et al. . Subthalamic stimulation improves orienting gaze movements in Parkinson's disease. Clin Neurophysiol. (2008) 119:1857–63. 10.1016/j.clinph.2008.04.013
    1. Tamma F, Caputo E, Chiesa V, Egidi M, Locatelli M, Rampini P, et al. . Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus. Neurol Sci. (2002) 23(Suppl. 2):S109–10. 10.1007/s100720200093
    1. Törnqvist G. Effect of oculomotor nerve stimulation on outflow facility and pupil diameter in a monkey (Cercopithecus ethiops). Invest Ophthalmol. (1970) 9:220–5.
    1. Tommasi G, Krack P, Fraix V, Pollak P. Effects of varying subthalamic nucleus stimulation on apraxia of lid opening in Parkinson's disease. J Neurol. (2012) 259:1944–50. 10.1007/s00415-012-6447-0
    1. Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, et al. . Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord. (2002) 17(Suppl. 3):S155–61. 10.1002/mds.10158
    1. Krack P, Fraix V, Mendes A, Benabid A-L, Pollak P. Postoperative management of subthalamic nucleus stimulation for Parkinson's disease. Mov Disord. (2002) 17(Suppl. 3):S188–97. 10.1002/mds.10163
    1. Piboolnurak P, Lang AE, Lozano AM, Miyasaki JM, Saint-Cyr JA, Poon Y-YW, et al. . Levodopa response in long-term bilateral subthalamic stimulation for Parkinson's disease. Mov Disord. (2007) 22:990–7. 10.1002/mds.21482
    1. Farris S, Giroux M. Retrospective review of factors leading to dissatisfaction with subthalamic nucleus deep brain stimulation during long-term management. Surg Neurol Int. (2013) 4:69. 10.4103/2152-7806.112612
    1. Tsuboi T, Watanabe H, Tanaka Y, Ohdake R, Yoneyama N, Hara K, et al. . Distinct phenotypes of speech and voice disorders in Parkinson's disease after subthalamic nucleus deep brain stimulation. J Neurol Neurosurg Psychiatr. (2015) 86:856–64. 10.1136/jnnp-2014-308043
    1. Åström M, Tripoliti E, Hariz MI, Zrinzo LU, Martinez-Torres I, Limousin P, et al. . Patient-specific model-based investigation of speech intelligibility and movement during deep brain stimulation. Stereotact Funct Neurosurg. (2010) 88:224–33. 10.1159/000314357
    1. Tripoliti E, Zrinzo L, Martinez-Torres I, Tisch S, Frost E, Borrell E, et al. . Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Mov Disord. (2008) 23:2377–83. 10.1002/mds.22296
    1. Skodda S. Effect of deep brain stimulation on speech performance in Parkinson's disease. Parkinsons Dis. (2012) 2012:850596–10. 10.1155/2012/850596
    1. Wang E, Verhagen Metman L, Bakay R, Arzbaecher J, Bernard B. The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson's disease–a preliminary report. Clin Linguist Phon. (2003) 17:283–9. 10.1080/0269920031000080064
    1. Santens P, De Letter M, Van Borsel J, De Reuck J, Caemaert J. Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson's disease. Brain Lang. (2003) 87:253–8. 10.1016/S0093-934X(03)00142-1
    1. Tripoliti E, Zrinzo L, Martinez-Torres I, Frost E, Pinto S, Foltynie T, et al. . Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease. Neurology. (2011) 76:80–6. 10.1212/WNL.0b013e318203e7d0
    1. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. . Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain. (2007) 130:1596–607. 10.1093/brain/awl346
    1. Chastan N, Westby GWM, Yelnik J, Bardinet E, Do MC, Agid Y, et al. . Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain. (2009) 132:172–84. 10.1093/brain/awn294
    1. Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, et al. . Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. Brain. (2013) 136:2098–108. 10.1093/brain/awt122
    1. Törnqvist AL, Schalén L, Rehncrona S. Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease treated with subthalamic deep brain stimulation. Mov Disord. (2005) 20:416–23. 10.1002/mds.20348
    1. Hammer MJ, Barlow SM, Lyons KE, Pahwa R. Subthalamic nucleus deep brain stimulation changes velopharyngeal control in Parkinson's disease. J Commun Disord. (2011) 44:37–48. 10.1016/j.jcomdis.2010.07.001
    1. Benabid AL, Benazzouz A, Limousin P, Koudsie A, Krack P, Piallat B, et al. . Dyskinesias and the subthalamic nucleus. Ann Neurol. (2000) 47:S189–92.
    1. Limousin P, Pollak P, Hoffmann D, Benazzouz A, Perret JE, Benabid AL. Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patients. Mov Disord. (1996) 11:231–5. 10.1002/mds.870110303
    1. Houeto J-L, Welter M-L, Bejjani P-B, Tezenas du Montcel S, Bonnet A-M, Mesnage V, et al. . Subthalamic stimulation in Parkinson disease: intraoperative predictive factors. Arch Neurol. (2003) 60:690–4. 10.1001/archneur.60.5.690
    1. Fagbami OY, Donato AA. Stridor and dysphagia associated with subthalamic nucleus stimulation in Parkinson disease. J Neurosurg. (2011) 115:1005–6. 10.3171/2011.7.JNS11602
    1. Yanase M, Kataoka H, Kawahara M, Hirabayashi H, Yamanaka T, Hirano M, et al. . Fixed epiglottis associated with subthalamic nucleus stimulation in Parkinson's disease. J Neurol Neurosurg Psychiatr. (2008) 79:332–3. 10.1136/jnnp.2007.133280
    1. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. . Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med. (2010) 362:2077–91. 10.1056/NEJMoa0907083
    1. Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, Nijssen PCG, et al. . Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. (2013) 12:37–44. 10.1016/S1474-4422(12)70264-8
    1. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. (2005) 62:554–60. 10.1001/archneur.62.4.554
    1. Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, et al. . Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. (2008) 7:605–14. 10.1016/S1474-4422(08)70114-5
    1. Zangaglia R, Pacchetti C, Pasotti C, Mancini F, Servello D, Sinforiani E, et al. . Deep brain stimulation and cognitive functions in Parkinson's disease: a three-year controlled study. Mov Disord. (2009) 24:1621–8. 10.1002/mds.22603
    1. Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, et al. . Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. (2010) 9:581–91. 10.1016/S1474-4422(10)70093-4
    1. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. . Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. (2012) 11:140–9. 10.1016/S1474-4422(11)70308-8
    1. Robertson LT, Horak FB, Anderson VC, Burchiel KJ, Hammerstad JP. Assessments of axial motor control during deep brain stimulation in parkinsonian patients. Neurosurgery. (2001) 48:544–51; discussion: 551–2. 10.1097/00006123-200103000-00017
    1. Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, et al. . Long-term outcome of subthalamic nucleus DBS in Parkinson's disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord. (2014) 20:376–81. 10.1016/j.parkreldis.2014.01.012
    1. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. (2010) 75:1292–9. 10.1212/WNL.0b013e3181f61329
    1. Hausdorff JM, Gruendlinger L, Scollins L, O'Herron S, Tarsy D. Deep brain stimulation effects on gait variability in Parkinson's disease. Mov Disord. (2009) 24:1688–92. 10.1002/mds.22554
    1. Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, et al. . Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology. (2001) 57:144–6. 10.1007/s00415-005-0896-7
    1. Hamani C, Richter E, Schwalb JM, Lozano AM. Bilateral subthalamic nucleus stimulation for Parkinson's disease: a systematic review of the clinical literature. Neurosurgery. (2008) 62(Suppl. 2):863–74. 10.1227/01.neu.0000316288.75736.1c
    1. St George RJ, Carlson-Kuhta P, Nutt JG, Hogarth P, Burchiel KJ, Horak FB. The effect of deep brain stimulation randomized by site on balance in Parkinson's disease. Mov Disord. (2014) 29:949–53. 10.1002/mds.25831
    1. Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol. (2015) 11:98–110. 10.1038/nrneurol.2014.252
    1. Isler C, Albi A, Schaper FLWVJ, Temel Y, Duits A. Neuropsychological outcome in subthalamic nucleus stimulation surgeries with electrodes passing through the caudate nucleus. Stereotact Funct Neurosurg. (2016) 94:413–20. 10.1159/000453278
    1. Morishita T, Okun MS, Jones JD, Foote KD, Bowers D. Cognitive declines after deep brain stimulation are likely to be attributable to more than caudate penetration and lead location. Brain. (2014) 137:e274. 10.1093/brain/awu008
    1. McIntyre CC, Richardson SJ, Frankemolle AM, Varga G, Noecker AM, Alberts JL. Improving postural stability via computational modeling approach to deep brain stimulation programming. Conf Proc IEEE Eng Med Biol Soc. (2011) 2011:675–6. 10.1109/IEMBS.2011.6090151
    1. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H, et al. . Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J Neurol Neurosurg Psychiatr. (2004) 75:834–9. 10.1136/jnnp.2002.009803
    1. Ulla M, Thobois S, Lemaire J-J, Schmitt A, Derost P, Broussolle E, et al. . Manic behaviour induced by deep-brain stimulation in Parkinson's disease: evidence of substantia nigra implication? J Neurol Neurosurg Psychiatr. (2006) 77:1363–6. 10.1136/jnnp.2006.096628
    1. Simmons DB, Dashtipour K. The quantitative measurement of reversible acute depression after subthalamic deep brain stimulation in a patient with Parkinson disease. Case Rep Neurol Med. (2015) 2015:165846–5. 10.1155/2015/165846
    1. Tommasi G, Lanotte M, Albert U, Zibetti M, Castelli L, Maina G, et al. . Transient acute depressive state induced by subthalamic region stimulation. J Neurol Sci. (2008) 273:135–8. 10.1016/j.jns.2008.06.012
    1. Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, et al. . Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. (1999) 340:1476–80. 10.1056/NEJM199905133401905
    1. Fasano A, Appel-Cresswell S, Jog M, Zurowkski M, Duff-Canning S, Cohn M, et al. . Medical management of Parkinson's disease after initiation of deep brain stimulation. Can J Neurol Sci. (2016) 43:626–34. 10.1017/cjn.2016.274
    1. Maier F, Lewis CJ, Horstkoetter N, Eggers C, Kalbe E, Maarouf M, et al. . Patients' expectations of deep brain stimulation, and subjective perceived outcome related to clinical measures in Parkinson's disease: a mixed-method approach. J Neurol Neurosurg Psychiatr. (2013) 84:1273–81. 10.1136/jnnp-2012-303670
    1. Tröster AI, Pahwa R, Fields JA, Tanner CM, Lyons KE. Quality of life in Essential Tremor Questionnaire (QUEST): development and initial validation. Parkinsonism Relat Disord. (2005) 11:367–73. 10.1016/j.parkreldis.2005.05.009
    1. Chopra A, Tye SJ, Lee KH, Sampson S, Matsumoto J, Adams A, et al. . Underlying neurobiology and clinical correlates of mania status after subthalamic nucleus deep brain stimulation in Parkinson's disease: a review of the literature. J Neuropsychiatry Clin Neurosci. (2012) 24:102–10. 10.1176/appi.neuropsych.10070109
    1. Greenhouse I, Gould S, Houser M, Hicks G, Gross J, Aron AR. Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson's disease. Neuropsychologia. (2011) 49:528–34. 10.1016/j.neuropsychologia.2010.12.030
    1. Broen M, Duits A, Visser Vandewalle V, Temel Y, Winogrodzka A. Impulse control and related disorders in Parkinson's disease patients treated with bilateral subthalamic nucleus stimulation: a review. Parkinsonism Relat Disord. (2011) 17:413–7. 10.1016/j.parkreldis.2011.02.013
    1. Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P, et al. . Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol. (2009) 66:817–24. 10.1002/ana.21795
    1. Boller JK, Barbe MT, Pauls KAM, Reck C, Brand M, Maier F, et al. . Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease. Exper Neurol. (2014) 254:70–7. 10.1016/j.expneurol.2014.01.005
    1. Brandt J, Rogerson M, Al-Joudi H, Reckess G, Shpritz B, Umeh CC, et al. . Betting on DBS: Effects of subthalamic nucleus deep brain stimulation on risk taking and decision making in patients with Parkinson's disease. Neuropsychology. (2015) 29:622–31. 10.1037/neu0000164
    1. Amami P, Dekker I, Piacentini S, Ferré F, Romito LM, Franzini A, et al. . Impulse control behaviours in patients with Parkinson's disease after subthalamic deep brain stimulation: de novo cases and 3-year follow-up. J Neurol Neurosurg Psychiatr. (2015) 86:562–4. 10.1136/jnnp-2013-307214
    1. Pallanti S, Bernardi S, Raglione LM, Marini P, Ammannati F, Sorbi S, et al. . Complex repetitive behavior: punding after bilateral subthalamic nucleus stimulation in Parkinson's disease. Parkinsonism Relat Disord. (2010) 16:376–80. 10.1016/j.parkreldis.2010.02.011
    1. Hälbig TD, Tse W, Frisina PG, Baker BR, Hollander E, Shapiro H, et al. . Subthalamic deep brain stimulation and impulse control in Parkinson's disease. Eur J Neurol. (2009) 16:493–7. 10.1111/j.1468-1331.2008.02509.x
    1. Doshi P, Bhargava P. Hypersexuality following subthalamic nucleus stimulation for Parkinson's disease. Neurol India. (2008) 56:474–6. 10.4103/0028-3886.44830
    1. Ulla M, Thobois S, Llorca P-M, Derost P, Lemaire J-J, Chereau-Boudet I, et al. . Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson's disease: clinical, anatomical and functional imaging study. J Neurol Neurosurg Psychiatr. (2011) 82:607–14. 10.1136/jnnp.2009.199323
    1. Smeding HMM, Goudriaan AE, Foncke EMJ, Schuurman PR, Speelman JD, Schmand B. Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatr. (2007) 78:517–9. 10.1136/jnnp.2006.102061
    1. Funkiewiez A, Ardouin C, Krack P, Fraix V, Van Blercom N, Xie J, et al. . Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease. Mov Disord. (2003) 18:524–30. 10.1002/mds.10441
    1. Romito LM, Raja M, Daniele A, Contarino MF, Bentivoglio AR, Barbier A, et al. . Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord. (2002) 17:1371–4. 10.1002/mds.10265
    1. Sensi M, Eleopra R, Cavallo MA, Sette E, Milani P, Quatrale R, et al. . Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord. (2004) 10:247–51. 10.1016/j.parkreldis.2004.01.007
    1. Castrioto A, Lhommée E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol. (2014) 13:287–305. 10.1016/S1474-4422(13)70294-1
    1. Mallet L, Schüpbach M, N'Diaye K, Remy P, Bardinet E, Czernecki V, et al. . Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA. (2007) 104:10661–6. 10.1073/pnas.0610849104
    1. Lhommée E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, et al. . Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain. (2012) 135:1463–77. 10.1093/brain/aws078
    1. Eusebio A, Witjas T, Cohen J, Fluchère F, Jouve E, Regis J, et al. . Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson's disease. J Neurol Neurosurg Psychiatr. (2013) 84:868–74. 10.1136/jnnp-2012-302387
    1. Cilia R, Siri C, Canesi M, Zecchinelli AL, De Gaspari D, Natuzzi F, et al. . Dopamine dysregulation syndrome in Parkinson's disease: from clinical and neuropsychological characterisation to management and long-term outcome. J Neurol Neurosurg Psychiatr. (2014) 85:311–8. 10.1136/jnnp-2012-303988
    1. Angeli A, Mencacci NE, Duran R, Aviles-Olmos I, Kefalopoulou Z, Candelario J, et al. . Genotype and phenotype in Parkinson's disease: lessons in heterogeneity from deep brain stimulation. Mov Disord. (2013) 28:1370–5. 10.1002/mds.25535
    1. Contarino MF, Daniele A, Sibilia AH, Romito LMA, Bentivoglio AR, Gainotti G, et al. . Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic nucleus in patients with Parkinson's disease. J Neurol Neurosurg Psychiatr. (2007) 78:248–52. 10.1136/jnnp.2005.086660
    1. Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T, et al. . Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial. Brain. (2013) 136:2109–19. 10.1093/brain/awt151
    1. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, et al. . Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. (2009) 65:586–95. 10.1002/ana.21596
    1. Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, et al. . Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants. Brain. (2010) 133:2664–76. 10.1093/brain/awq221
    1. Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Lancet Neurol. (2006) 5:578–88. 10.1016/S1474-4422(06)70475-6
    1. Haegelen C, García-Lorenzo D, Le Jeune F, Péron J, Gibaud B, Riffaud L, et al. . SPECT and PET analysis of subthalamic stimulation in Parkinson's disease: analysis using a manual segmentation. J Neurol. (2010) 257:375–82. 10.1007/s00415-009-5327-8
    1. Kalbe E, Calabrese P, Kohn N, Hilker R, Riedel O, Wittchen H-U, et al. . Screening for cognitive deficits in Parkinson's disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat Disord. (2008) 14:93–101. 10.1016/j.parkreldis.2007.06.008
    1. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. . Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. (2012) 79:55–65. 10.1212/WNL.0b013e31825dcdc1
    1. Volkmann J, Daniels C, Witt K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol. (2010) 6:487–98. 10.1038/nrneurol.2010.111
    1. Volkmann J, Fogel W, Krack P. Postoperatives neurologisches management bei stimulation des nucleus subthalamicus. Aktuelle Neurologie. (2008) 27:S23–39. 10.1055/s-2007-1017592
    1. Fasano A, Herzog J, Seifert E, Stolze H, Falk D, Reese R, et al. . Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord. (2011) 26:844–51. 10.1002/mds.23583
    1. Eitan R, Shamir RR, Linetsky E, Rosenbluh O, Moshel S, Ben-Hur T, et al. . Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Front Syst Neurosci. (2013) 7:69. 10.3389/fnsys.2013.00069
    1. Grant PF, Lowery MM. Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation. IEEE Trans Bio Med Eng. (2010) 57:2386–93. 10.1109/TBME.2010.2055054
    1. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. (1996) 41:2271–93.
    1. Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. (1989) 17:25–104.
    1. Latikka J, Kuurne T, Eskola H. Conductivity of living intracranial tissues. Phys Med Biol. (2001) 46:1611–6. 10.1088/0031-9155/46/6/302
    1. Baumann CR, Imbach LL, Baumann-Vogel H, Uhl M, Sarnthein J, Sürücü O. Interleaving deep brain stimulation for a patient with both Parkinson's disease and essential tremor. Mov Disord. (2012) 27:1700–1. 10.1002/mds.25221
    1. Wojtecki L, Vesper J, Schnitzler A. Interleaving programming of subthalamic deep brain stimulation to reduce side effects with good motor outcome in a patient with Parkinson's disease. Parkinsonism Relat Disord. (2011) 17:293–4. 10.1016/j.parkreldis.2010.12.005
    1. Herzog J, Pinsker M, Wasner M, Steigerwald F, Wailke S, Deuschl G, et al. . Stimulation of subthalamic fibre tracts reduces dyskinesias in STN-DBS. Mov Disord. (2007) 22:679–84. 10.1002/mds.21387
    1. Burrows AM, Ravin PD, Novak P, Peters MLB, Dessureau B, Swearer J, et al. . Limbic and motor function comparison of deep brain stimulation of the zona incerta and subthalamic nucleus. Neurosurgery. (2012) 70:125–30; discussion: 130–1. 10.1227/NEU.0b013e318232fdac
    1. Ricciardi L, Morgante L, Epifanio A, Zibetti M, Lanotte M, Lopiano L, et al. . Stimulation of the subthalamic area modulating movement and behavior. Parkinsonism Relat Disord. (2014) 20:1298–300. 10.1016/j.parkreldis.2014.07.013
    1. Ramirez-Zamora A, Kahn M, Campbell J, DeLaCruz P, Pilitsis JG. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson's disease. J Neurol. (2015) 262:578–84. 10.1007/s00415-014-7605-3
    1. Kern DS, Picillo M, Thompson JA, Sammartino F, di Biase L, Munhoz RP, et al. . Interleaving stimulation in Parkinson's disease, tremor, and dystonia. Stereotact Funct Neurosurg. (2019) 96:379–91. 10.1159/000494983
    1. Hariz M, Blomstedt P, Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. Mov Disord. (2013) 28:1784–92. 10.1002/mds.25665
    1. Stefani A, Peppe A, Pierantozzi M, Galati S, Moschella V, Stanzione P, et al. . Multi-target strategy for Parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull. (2009) 78:113–8. 10.1016/j.brainresbull.2008.08.007
    1. Almeida L, Rawal PV, Ditty B, Smelser BL, Huang H, Okun MS, et al. . Deep brain stimulation battery longevity: comparison of monopolar versus bipolar stimulation modes. Move Dis Clin Pract. (2016) 3:359–66. 10.1002/mdc3.12285
    1. Bouthour W, Wegrzyk J, Momjian S, Péron J, Fleury V, Tomkova Chaoui E, et al. . Short pulse width in subthalamic stimulation in Parkinson's disease: a randomized, double-blind study. Mov Disord. (2017) 33:169–73. 10.1002/mds.27265
    1. Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S, et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol. (2015) 2:427–32. 10.1002/acn3.168
    1. Holsheimer J, Demeulemeester H, Nuttin B, de Sutter P. Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci. (2000) 12:4573–7. 10.1111/j.1460-9568.2000.01306.x
    1. Garcia L, D'Alessandro G, Bioulac B, Hammond C. High-frequency stimulation in Parkinson's disease: more or less? Trends Neurosci. (2005) 28:209–16. 10.1016/j.tins.2005.02.005
    1. Garcia L, D'Alessandro G, Fernagut P-O, Bioulac B, Hammond C. Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons. J Neurophysiol. (2005) 94:3662–9. 10.1152/jn.00496.2005
    1. Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, et al. . Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease. Brain. (2010) 133:205–14. 10.1093/brain/awp229
    1. Vercruysse S, Vandenberghe W, Münks L, Nuttin B, Devos H, Nieuwboer A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study. J Neurol Neurosurg Psychiatr. (2014) 85:871–7. 10.1136/jnnp-2013-306336
    1. Schlenstedt C, Shalash A, Muthuraman M, Falk D, Witt K, Deuschl G. Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson's disease: a systematic review and meta-analysis. Eur J Neurol. (2017) 24:18–26. 10.1111/ene.13167
    1. Xie T, Kang UJ, Warnke P. Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson's disease. J Neurol Neurosurg Psychiatr. (2012) 83:1015–7. 10.1136/jnnp-2011-302091
    1. Ramdhani RA, Patel A, Swope D, Kopell BH. Early use of 60 Hz frequency subthalamic stimulation in Parkinson's disease: a case series and review. Neuromodulation. (2015) 18:664–69. 10.1111/ner.12288
    1. Fietzek UM, Zwosta J, Schroeteler FE, Ziegler K, Ceballos-Baumann AO. Levodopa changes the severity of freezing in Parkinson's disease. Parkinsonism Relat Disord. (2013) 19:894–6. 10.1016/j.parkreldis.2013.04.004
    1. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. . “Rejuvenation” protects neurons in mouse models of Parkinson's disease. Nature. (2007) 447:1081–6. 10.1038/nature05865
    1. Moreau C, Delval A, Defebvre L, Dujardin K, Duhamel A, Petyt G, et al. . Methylphenidate for gait hypokinesia and freezing in patients with Parkinson's disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. (2012) 11:589–96. 10.1016/S1474-4422(12)70106-0
    1. Moreau C, Defebvre L, Destee A, Bleuse S, Clement F, Blatt JL, et al. . STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. (2008) 71:80–4. 10.1212/01.wnl.0000303972.16279.46
    1. Moreau C, Pennel-Ployart O, Pinto S, Plachez A, Annic A, Viallet F, et al. . Modulation of dysarthropneumophonia by low-frequency STN DBS in advanced Parkinson's disease. Mov Disord. (2011) 26:659–63. 10.1002/mds.23538
    1. Xie T, Vigil J, MacCracken E, Gasparaitis A, Young J, Kang W, et al. . Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology. (2015) 84:415–20. 10.1212/WNL.0000000000001184
    1. Khoo HM, Kishima H, Hosomi K, Maruo T, Tani N, Oshino S, et al. Low-frequency subthalamic nucleus stimulation in Parkinson's disease: a randomized clinical trial. Mov Disord. (2014) 29:270–4. 10.1002/mds.25810
    1. Brozova H, Barnaure I, Alterman RL, Tagliati M. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. (2009) 72:770; author reply: 770–1. 10.1212/01.wnl.0000339385.187472.7d
    1. Phibbs FT, Arbogast PG, Davis TL. 60-Hz frequency effect on gait in Parkinson's disease with subthalamic nucleus deep brain stimulation. Neuromodulation. (2014) 17:717–20; discussion: 720. 10.1111/ner.12131
    1. Sidiropoulos C, Walsh R, Meaney C, Poon YY, Fallis M, Moro E. Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson's disease. J Neurol. (2013) 260:2306–11. 10.1007/s00415-013-6983-2
    1. Vallabhajosula S, Haq IU, Hwynn N, Oyama G, Okun M, Tillman MD, et al. . Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson's disease: a quantitative study. Brain Stimul. (2015) 8:64–75. 10.1016/j.brs.2014.10.011
    1. Stegemöller EL, Vallabhajosula S, Haq I, Hwynn N, Hass CJ, Okun MS. Selective use of low frequency stimulation in Parkinson's disease based on absence of tremor. NeuroRehabilitation. (2013) 33:305–12. 10.3233/NRE-130960
    1. Ricchi V, Zibetti M, Angrisano S, Merola A, Arduino N, Artusi CA, et al. . Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimul. (2012) 5:388–92. 10.1016/j.brs.2011.07.001
    1. Xie T, Padmanaban M, Bloom L, MacCracken E, Bertacchi B, Dachman A, et al. . Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl Neurodegener. (2017) 6:13. 10.1186/s40035-017-0083-7
    1. Huang H, Watts RL, Montgomery EB. Effects of deep brain stimulation frequency on bradykinesia of Parkinson's disease. Mov Disord. (2014) 29:203–6. 10.1002/mds.25773
    1. Wojtecki L, Timmermann L, Jörgens S, Südmeyer M, Maarouf M, Treuer H, et al. . Frequency-dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Arch Neurol. (2006) 63:1273–6. 10.1001/archneur.63.9.1273
    1. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, et al. . Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson??s disease. Neuroreport. (2005) 16:1877–81. 10.1097/01.wnr.0000187629.38010.12
    1. Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL. Efficacy and safety of Pedunculopontine Nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci. (2016) 43:120–6. 10.1017/cjn.2015.318
    1. Windels F, Thevathasan W, Silburn P, Sah P. Where and what is the PPN and what is its role in locomotion? Brain. (2015) 138:1133–4. 10.1093/brain/awv059
    1. Schrader C, Seehaus F, Capelle HH, Windhagen A, Windhagen H, Krauss JK. Effects of pedunculopontine area and pallidal DBS on gait ignition in Parkinson's disease. Brain Stimul. (2013) 6:856–9. 10.1016/j.brs.2013.05.005
    1. Khan S, Mooney L, Plaha P, Javed S, White P, Whone AL, et al. . Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease. Br J Neurosurg. (2011) 25:273–80. 10.3109/02688697.2010.544790
    1. Wang J-W, Zhang Y-Q, Zhang X-H, Wang Y-P, Li J-P, Li Y-J. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after parkinson disease: a meta-analysis of individual patient data. World Neurosurg. (2017) 102:72–8. 10.1016/j.wneu.2017.02.110
    1. Fournier-Gosselin M-P, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation. Mov Disord. (2013) 28:1330–6. 10.1002/mds.25620
    1. Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS. Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol. (2014) 5:243. 10.3389/fneur.2014.00243
    1. Thevathasan W, Debû B, Aziz T, Bloem BR, Blahak C, Butson C, et al. . Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review. Mov Disord. (2017) 33:10–20. 10.1002/mds.27098
    1. Moro E, Hamani C, Poon Y-Y, Al-Khairallah T, Dostrovsky JO, Hutchison WD, et al. . Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. Brain. (2010) 133:215–24. 10.1093/brain/awp261
    1. Brosius SN, Gonzalez CL, Shuresh J, Walker HC. Reversible improvement in severe freezing of gait from Parkinson's disease with unilateral interleaved subthalamic brain stimulation. Parkinsonism Relat Disord. (2015) 21:1469–70. 10.1016/j.parkreldis.2015.09.047
    1. Koss AM, Alterman RL, Tagliati M, Shils JL. Calculating total electrical energy delivered by deep brain stimulation systems. Ann Neurol. (2005) 58:168; author reply: 168–9. 10.1002/ana.20525
    1. Merola A, Zibetti M, Artusi CA, Rizzi L, Angrisano S, Lanotte M, et al. . 80 Hz versus 130 Hz subthalamic nucleus deep brain stimulation: effects on involuntary movements. Parkinsonism Relat Disord. (2013) 19:453–6. 10.1016/j.parkreldis.2013.01.006
    1. Katayama Y, Oshima H, Kano T, Kobayashi K, Fukaya C, Yamamoto T. Direct effect of subthalamic nucleus stimulation on levodopa-induced peak-dose dyskinesia in patients with Parkinson's disease. Stereotact Funct Neurosurg. (2006) 84:176–9. 10.1159/000094957
    1. Herzog J, Pogarell O, Pinsker MO, Kupsch A, Oertel WH, Lindvall O, et al. . Deep brain stimulation in Parkinson's disease following fetal nigral transplantation. Mov Disord. (2008) 23:1293–6. 10.1002/mds.21768
    1. Maltête D, Derrey S, Chastan N, Debono B, Gérardin E, Fréger P, et al. . Microsubthalamotomy: an immediate predictor of long-term subthalamic stimulation efficacy in Parkinson disease. Mov Disord. (2008) 23:1047–50. 10.1002/mds.22054
    1. Singh A, Kammermeier S, Mehrkens J-H, Bötzel K. Movement kinematic after deep brain stimulation associated microlesions. J Neurol Neurosurg Psychiatr. (2012) 83:1022–6. 10.1136/jnnp-2012-302309
    1. Witt K, Daniels C, Herzog J, Lorenz D, Volkmann J, Reiff J, et al. . Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease. J Neuropsychiatry Clin Neurosci. (2006) 18:397–401. 10.1176/jnp.2006.18.3.397
    1. Thobois S, Ardouin C, Lhommée E, Klinger H, Lagrange C, Xie J, et al. . Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain. (2010) 133:1111–27. 10.1093/brain/awq032
    1. Czernecki V, Schüpbach M, Yaici S, Lévy R, Bardinet E, Yelnik J, et al. . Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov Disord. (2008) 23:964–9. 10.1002/mds.21949
    1. Russmann H, Ghika J, Combrement P, Villemure J-G, Bogousslavsky J, Burkhard PR, et al. . L-dopa-induced dyskinesia improvement after STN-DBS depends upon medication reduction. Neurology. (2004) 63:153–5. 10.1212/01.WNL.0000131910.72829.9D
    1. Moro E, Esselink RJA, Benabid A-L, Pollak P. Response to levodopa in parkinsonian patients with bilateral subthalamic nucleus stimulation. Brain. (2002) 125:2408–17. 10.1093/brain/awf249
    1. Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. (2009) 6:046001. 10.1088/1741-2560/6/4/046001
    1. Beaulieu-Boire I, Fasano A. Current or voltage? Another Shakespearean dilemma. Eur J Neurol. (2015) 22:887–8. 10.1111/ene.12537
    1. Maks CB, Butson CR, Walter BL, Vitek JL, McIntyre CC. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J Neurol Neurosurg Psychiatr. (2009) 80:659–66. 10.1136/jnnp.2007.126219
    1. Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol. (2010) 121:2128–33. 10.1016/j.clinph.2010.04.026
    1. Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, et al. . Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. (1996) 84:203–14. 10.3171/jns.1996.84.2.0203
    1. Sillay KA, Chen JC, Montgomery EB. Long-term measurement of therapeutic electrode impedance in deep brain stimulation. Neuromodulation. (2010) 13:195–200. 10.1111/j.1525-1403.2010.00275.x
    1. Hemm S, Vayssiere N, Mennessier G, Cif L, Zanca M, Ravel P, et al. . Evolution of brain impedance in dystonic patients treated by GPI electrical stimulation. Neuromodulation. (2004) 7:67–75. 10.1111/j.1094-7159.2004.04009.x
    1. Cheung T, Nuño M, Hoffman M, Katz M, Kilbane C, Alterman R, et al. . Longitudinal impedance variability in patients with chronically implanted DBS devices. Brain Stimul. (2013) 6:746–51. 10.1016/j.brs.2013.03.010
    1. Ramirez de Noriega F, Eitan R, Marmor O, Lavi A, Linetzky E, Bergman H, et al. . Constant current versus constant voltage subthalamic nucleus deep brain stimulation in Parkinson's disease. Stereotact Funct Neurosurg. (2015) 93:114–21. 10.1159/000368443
    1. Preda F, Cavandoli C, Lettieri C, Pilleri M, Antonini A, Eleopra R, et al. . Switching from constant voltage to constant current in deep brain stimulation: a multicenter experience of mixed implants for movement disorders. Eur J Neurol. (2016) 23:190–5. 10.1111/ene.12835
    1. Lettieri C, Rinaldo S, Devigili G, Pisa F, Mucchiut M, Belgrado E, et al. . Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. (2015) 22:919–26. 10.1111/ene.12515
    1. Bronstein JM, Tagliati M, McIntyre C, Chen R, Cheung T, Hargreaves EL, et al. . The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation. (2015) 18:85–8; discussion: 88–9. 10.1111/ner.12227
    1. Barow E, Neumann W-J, Brücke C, Huebl J, Horn A, Brown P, et al. . Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain. (2014) 137:3012–24. 10.1093/brain/awu258
    1. Dowsey-Limousin P. Postoperative management of Vim DBS for tremor. Mov Disord. (2002) 17(Suppl. 3):S208–11. 10.1002/mds.10165
    1. Earhart GM, Hong M, Tabbal SD, Perlmutter JS. Effects of thalamic stimulation frequency on intention and postural tremor. Exp Neurol. (2007) 208:257–63. 10.1016/j.expneurol.2007.08.014
    1. Ushe M, Mink JW, Revilla FJ, Wernle A, Schneider Gibson P, McGee-Minnich L, et al. . Effect of stimulation frequency on tremor suppression in essential tremor. Mov Disord. (2004) 19:1163–8. 10.1002/mds.20231
    1. Ushe M, Mink JW, Tabbal SD, Hong M, Schneider Gibson P, Rich KM, et al. . Postural tremor suppression is dependent on thalamic stimulation frequency. Mov Disord. (2006) 21:1290–2. 10.1002/mds.20926
    1. O'Suilleabhain PE, Frawley W, Giller C, Dewey RB. Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation. Neurology. (2003) 60:786–90. 10.1212/01.WNL.0000044156.56643.74
    1. Moldovan A-S, Hartmann CJ, Trenado C, Meumertzheim N, Slotty PJ, Vesper J, et al. Less is more - Pulse width dependent therapeutic window in deep brain stimulation for essential tremor. Brain Stimul. (2018) 1:1132–9. 10.1016/j.brs.2018.04.019
    1. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain. (2014) 137:109–121. 10.1093/brain/awt304
    1. Herzog J, Hamel W, Wenzelburger R, Pötter M, Pinsker MO, Bartussek J, et al. . Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain. (2007) 130:1608–25. 10.1093/brain/awm077
    1. Fytagoridis A, Sandvik U, Åström M, Bergenheim T, Blomstedt P. Long term follow-up of deep brain stimulation of the caudal zona incerta for essential tremor. J Neurol Neurosurg Psychiatr. (2012) 83:258–62. 10.1136/jnnp-2011-300765
    1. Blomstedt P, Sandvik U, Tisch S. Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor. Mov Disord. (2010) 25:1350–6. 10.1002/mds.22758
    1. Plaha P, Javed S, Agombar D, O' Farrell G, Khan S, Whone A, Gill S. Bilateral caudal zona incerta nucleus stimulation for essential tremor: outcome and quality of life. J Neurol Neurosurg Psychiatr. (2011) 82:899–904. 10.1136/jnnp.2010.222992
    1. Koller W, Pahwa R, Busenbark K, Hubble J, Wilkinson S, Lang A, et al. . High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. (1997) 42:292–9. 10.1002/ana.410420304
    1. Baizabal-Carvallo JF, Kagnoff MN, Jimenez-Shahed J, Fekete R, Jankovic J. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatr. (2014) 85:567–72. 10.1136/jnnp-2013-304943
    1. Barbe MT, Pochmann J, Lewis CJ, Allert N, Wirths J, Visser Vandewalle V, et al. . Utilization of predefined stimulation groups by essential tremor patients treated with VIM-DBS. Parkinsonism Relat Disord. (2014) 20:1415–8. 10.1016/j.parkreldis.2014.09.021
    1. Mücke D, Becker J, Barbe MT, Meister I, Liebhart L, Roettger TB, et al. . The effect of deep brain stimulation on the speech motor system. J Speech Lang Hear Res. (2014) 57:1206–18. 10.1044/2014_JSLHR-S-13-0155
    1. Fasano A, Herzog J, Raethjen J, Rose FEM, Muthuraman M, Volkmann J, et al. . Gait ataxia in essential tremor is differentially modulated by thalamic stimulation. Brain. (2010) 133:3635–48. 10.1093/brain/awq267
    1. Kronenbuerger M, Konczak J, Ziegler W, Buderath P, Frank B, Coenen VA, et al. . Balance and motor speech impairment in essential tremor. Cerebellum. (2009) 8:389–98. 10.1007/s12311-009-0111-y
    1. Earhart GM, Clark BR, Tabbal SD, Perlmutter JS. Gait and balance in essential tremor: variable effects of bilateral thalamic stimulation. Mov Disord. (2009) 24:386–91. 10.1002/mds.22356
    1. Hopfner F, Deuschl G. Is essential tremor a single entity? Eur J Neurol. (2018) 25:71–82. 10.1111/ene.13454
    1. Yamamoto T, Katayama Y, Kano T, Kobayashi K, Oshima H, Fukaya C. Deep brain stimulation for the treatment of parkinsonian, essential, and poststroke tremor: a suitable stimulation method and changes in effective stimulation intensity. J Neurosurg. (2004) 101:201–9. 10.3171/jns.2004.101.2.0201
    1. Pilitsis JG, Metman LV, Toleikis JR, Hughes LE, Sani SB, Bakay RAE. Factors involved in long-term efficacy of deep brain stimulation of the thalamus for essential tremor. J Neurosurg. (2008) 109:640–6. 10.3171/JNS/2008/109/10/0640
    1. Zhang K, Bhatia S, Oh MY, Cohen D, Angle C, Whiting D. Long-term results of thalamic deep brain stimulation for essential tremor. J Neurosurg. (2010) 112:1271–6. 10.3171/2009.10.JNS09371
    1. Barbe MT, Liebhart L, Runge M, Pauls KAM, Wojtecki L, Schnitzler A, et al. . Deep brain stimulation in the nucleus ventralis intermedius in patients with essential tremor: habituation of tremor suppression. J Neurol. (2011) 258:434–9. 10.1007/s00415-010-5773-3
    1. Hariz G-M, Blomstedt P, Koskinen L-OD. Long-term effect of deep brain stimulation for essential tremor on activities of daily living and health-related quality of life. Acta Neurol Scand. (2008) 118:387–94. 10.1111/j.1600-0404.2008.01065.x
    1. Limousin P, Speelman JD, Gielen F, Janssens M, study collaborators. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatr. (1999) 66:289–96. 10.1136/jnnp.66.3.289
    1. Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. (2001) 16:464–8. 10.1136/jnnp.71.5.682
    1. Martinez-Ramirez D, Morishita T, Zeilman PR, Peng-Chen Z, Foote KD, Okun MS. Atrophy and other potential factors affecting long term deep brain stimulation response: a case series. PLoS ONE. (2014) 9:e111561. 10.1371/journal.pone.0111561
    1. Favilla CG, Ullman D, Wagle Shukla A, Foote KD, Jacobson CE, Okun MS. Worsening essential tremor following deep brain stimulation: disease progression versus tolerance. Brain. (2012) 135:1455–62. 10.1093/brain/aws026
    1. Garcia Ruiz P, Muñiz de Igneson J, Lopez Ferro O, Martin C, Magariños Ascone C. Deep brain stimulation holidays in essential tremor. J Neurol. (2001) 248:725–6. 10.1007/s004150170127
    1. Eltahawy HA, Saint-Cyr J, Giladi N, Lang AE, Lozano AM. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. (2004) 54:613–19; discussion: 619–21. 10.1227/01.NEU.0000108643.94730.21
    1. Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Benabid A-L, Cornu P, et al. . Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. (2005) 352:459–67. 10.1056/NEJMoa042187
    1. Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, et al. . Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol. (2009) 8:709–17. 10.1016/S1474-4422(09)70151-6
    1. Picillo M, Pellecchia MT, Vitale C, Barone P, Amboni M. Pallidal stimulation in atypical pantothenate kinase-associated neurodegeneration: six-year follow-up. Mov Disord. (2014) 29:276–7. 10.1002/mds.25709
    1. Krauss JK, Yianni J, Loher TJ, Aziz TZ. Deep brain stimulation for dystonia. J Clin Neurophysiol. (2004) 21:18–30. 10.1097/00004691-200401000-00004
    1. Kupsch A, Benecke R, Müller J, Trottenberg T, Schneider G-H, Poewe W, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. (2006) 355:1978–90. 10.1056/NEJMoa063618
    1. Grips E, Blahak C, Capelle H-H, Bäzner H, Weigel R, Sedlaczek O, et al. . Patterns of reoccurrence of segmental dystonia after discontinuation of deep brain stimulation. J Neurol Neurosurg Psychiatr. (2007) 78:318–20. 10.1136/jnnp.2006.089409
    1. Cheung T, Zhang C, Rudolph J, Alterman RL, Tagliati M. Sustained relief of generalized dystonia despite prolonged interruption of deep brain stimulation. Mov Disord. (2013) 28:1431–4. 10.1002/mds.25353
    1. Grabli D, Ewenczyk C, Coelho Braga MC, Lagrange C, Fraix V, Cornu P, et al. . Interruption of deep brain stimulation of the globus pallidus in primary generalized dystonia. Mov Disord. (2009) 24:2363–9. 10.1002/mds.22827
    1. Levin J, Singh A, Feddersen B, Mehrkens J-H, Bötzel K. Onset latency of segmental dystonia after deep brain stimulation cessation: a randomized, double-blind crossover trial. Mov Disord. (2013) 29:944–9. 10.1002/mds.25780
    1. Yianni J, Bain PG, Gregory RP, Nandi D, Joint C, Scott RB, et al. . Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol. (2003) 10:239–47. 10.1046/j.1468-1331.2003.00592.x
    1. Trottenberg T, Meissner W, Kabus C, Arnold G, Funk T, Einhaupl KM, et al. . Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov Disord. (2001) 16:769–71. 10.1002/mds.1119
    1. Kumar R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson's disease and dystonia. Mov Disord. (2002) 17(Suppl. 3):S198–207. 10.1002/mds.10164
    1. Cheung T, Noecker AM, Alterman RL, McIntyre CC, Tagliati M. Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol. (2014) 76:22–30. 10.1002/ana.24187
    1. Rozanski VE, da Silva NM, Ahmadi S-A, Mehrkens J, da Silva Cunha J, Houde J-C, et al. . The role of the pallidothalamic fibre tracts in deep brain stimulation for dystonia: a diffusion MRI tractography study. Hum Brain Mapp. (2017) 38:1224–32. 10.1002/hbm.23450
    1. Tisch S, Zrinzo L, Limousin P, Bhatia KP, Quinn N, Ashkan K, et al. . Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatr. (2007) 78:1314–9. 10.1136/jnnp.2006.109694
    1. Kupsch A, Tagliati M, Vidailhet M, Aziz T, Krack P, Moro E, et al. . Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. (2011) 26(Suppl. 1):S37–53. 10.1002/mds.23624
    1. Kupsch A, Klaffke S, Kühn AA, Meissner W, Arnold G, Schneider G-H, et al. . The effects of frequency in pallidal deep brain stimulation for primary dystonia. J Neurol. (2003) 250:1201–5. 10.1007/s00415-003-0179-0
    1. Alterman RL, Shils JL, Miravite J, Tagliati M. Lower stimulation frequency can enhance tolerability and efficacy of pallidal deep brain stimulation for dystonia. Mov Disord. (2007) 22:366–8. 10.1002/mds.21274
    1. Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol. (2009) 16:506–12. 10.1111/j.1468-1331.2008.02520.x
    1. Coubes P, Cif L, Fertit El H, Hemm S, Vayssiere N, Serrat S, et al. . Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. (2004) 101:189–94. 10.3171/jns.2004.101.2.0189
    1. Vercueil L, Houeto J-L, Krystkowiak P, Lagrange C, Cassim F, Benazzouz A, et al. . Effects of pulse width variations in pallidal stimulation for primary generalized dystonia. J Neurol. (2007) 254:1533–7. 10.1007/s00415-007-0578-8
    1. Ostrem JL, Markun LC, Glass GA, Racine CA, Volz MM, Heath SL, et al. . Effect of frequency on subthalamic nucleus deep brain stimulation in primary dystonia. Parkinsonism Relat Disord. (2014) 20:432–8. 10.1016/j.parkreldis.2013.12.012
    1. Zauber SE, Watson N, Comella CL, Bakay RAE, Metman LV. Stimulation-induced parkinsonism after posteroventral deep brain stimulation of the globus pallidus internus for craniocervical dystonia. J Neurosurg. (2009) 110:229–33. 10.3171/2008.6.17621
    1. Berman BD, Starr PA, Marks WJ, Ostrem JL. Induction of bradykinesia with pallidal deep brain stimulation in patients with cranial-cervical dystonia. Stereotact Funct Neurosurg. (2009) 87:37–44. 10.1159/000195718
    1. Brecl Jakob G, Pelykh O, Košutzká Z, Pirtošek Z, Trošt M, Ilmberger J, et al. . Postural stability under globus pallidus internus stimulation for dystonia. Clin Neurophysiol. (2015) 126:2299–305. 10.1016/j.clinph.2015.01.022
    1. Krack P, Pollak P, Limousin P, Hoffmann D, Benazzouz A, Le Bas J-F, et al. . Opposite motor effects of pallidal stimulation in Parkinson's disease. Ann Neurol. (1998) 43:180–92. 10.1002/ana.410430208
    1. Schrader C, Capelle H-H, Kinfe TM, Blahak C, Bäzner H, Lütjens G, et al. . GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. (2011) 77:483–8. 10.1212/WNL.0b013e318227b19e
    1. Blahak C, Capelle H-H, Baezner H, Kinfe TM, Hennerici MG, Krauss JK. Micrographia induced by pallidal DBS for segmental dystonia: a subtle sign of hypokinesia? J Neural Transm. (Vienna: ). (2011) 118:549–53. 10.1007/s00702-010-0544-y
    1. Volkmann J, Wolters A, Kupsch A, Müller J, Kühn AA, Schneider G-H, et al. . Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol. (2012) 11:1029–38. 10.1016/S1474-4422(12)70257-0
    1. Nebel A, Reese R, Deuschl G, Mehdorn H-M, Volkmann J. Acquired stuttering after pallidal deep brain stimulation for dystonia. J Neural Transm. (2009) 116:167–9. 10.1007/s00702-008-0173-x

Source: PubMed

3
Předplatit