Ultrasound-Guided Interventions for Carpal Tunnel Syndrome: A Systematic Review and Meta-Analyses

King Hei Stanley Lam, Yung-Tsan Wu, Kenneth Dean Reeves, Felice Galluccio, Abdallah El-Sayed Allam, Philip W H Peng, King Hei Stanley Lam, Yung-Tsan Wu, Kenneth Dean Reeves, Felice Galluccio, Abdallah El-Sayed Allam, Philip W H Peng

Abstract

Carpal tunnel syndrome (CTS) is the most common peripheral entrapment, and recently, ultrasound-guided perineural injection (UPIT) and percutaneous flexor retinaculum release (UPCTR) have been utilized to treat CTS. However, no systematic review or meta-analysis has included both intervention types of ultrasound-guided interventions for CTS. Therefore, we performed this review using four databases (i.e., PubMed, EMBASE, Scopus, and Cochrane) to evaluate the quality of evidence, effectiveness, and safety of the published studies on ultrasound-guided interventions in CTS. Among sixty studies selected for systemic review, 20 randomized treatment comparison or controlled studies were included in six meta-analyses. Steroid UPIT with ultrasound guidance outperformed that with landmark guidance. UPIT with higher-dose steroids outperformed that with lower-dose steroids. UPIT with 5% dextrose in water (D5W) outperformed control injection and hydrodissection with high-volume D5W was superior to that with low-volume D5W. UPIT with platelet-rich plasma outperformed various control treatments. UPCTR outperformed open surgery in terms of symptom improvement but not functional improvement. No serious adverse events were reported in the studies reviewed. The findings suggest that both UPIT and UPCTR may provide clinically important benefits and appear safe. Further treatment comparison studies are required to determine comparative therapeutic efficacy.

Keywords: carpal tunnel syndrome; injection; intervention; release; ultrasound-guided.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 2
Figure 2
Meta—analysis of UPIT with steroids vs. landmark-guided steroid injection. US, ultrasound; LM, landmark; VAS, visual analogue scale; BCTQ—SS, Boston Carpal Tunnel Questionnaire—symptom scale; BCTQ—FS, Boston Carpal Tunnel Questionnaire—functional scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 3
Figure 3
Meta—analysis of UPIT with high—dose vs. low—dose steroids. VAS, visual analogue scale; BCTQ—SS, Boston Carpal Tunnel Questionnaire—symptom scale; BCTQ—FS, Boston Carpal Tunnel Questionnaire—functional scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 4
Figure 4
Meta—analysis of UPIT with D5W vs. control injections. VAS, visual analogue scale; BCTQ—SS, Boston Carpal Tunnel Questionnaire—symptom scale; BCTQ—FS, Boston Carpal Tunnel Questionnaire—functional scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 5
Figure 5
Meta—analysis of UPIT with higher volumes of D5W vs. lower volumes of D5W. VAS, visual analogue scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 6
Figure 6
Meta—analysis of UPIT with PRP vs. control treatments. VAS, visual analogue scale; BCTQ—SS, Boston Carpal Tunnel Questionnaire—symptom scale; BCTQ—FS, Boston Carpal Tunnel Questionnaire—functional scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 7
Figure 7
Meta—analysis of UPCTR vs. surgery. BCTQ—SS, The Boston Carpal Tunnel Questionnaire—symptom scale; BCTQ—FS, The Boston Carpal Tunnel Questionnaire—functional scale. The green squares represent the differences between the means of each of the two groups compared, i.e., the mean differences. The size of the green square represents how much that individual study affects the overall outcome of the meta—analysis, i.e., the weight of the studies on the meta—analysis. The precision of the study depends on the 95% confidence interval for that mean difference, i.e., the length of the straight lines, the shorter the lines, the more precise the mean differences. The black trapezoid is the pooled mean difference of all the studies combined in consideration of the weight of each study, with its confidence interval extending from the left tip to the right tip.
Figure 1
Figure 1
PRISMA flow diagram showing the selection of studies.

References

    1. Burton C.L., Chesterton L.S., Chen Y., van der Windt D.A. Clinical Course and Prognostic Factors in Conservatively Managed Carpal Tunnel Syndrome: A Systematic Review. Arch. Phys. Med. Rehabil. 2016;97:836–852.e831. doi: 10.1016/j.apmr.2015.09.013.
    1. Atroshi I., Gummesson C., Johnsson R., Ornstein E., Ranstam J., Rosen I. Prevalence for clinically proved carpal tunnel syndrome is 4 percent. Lakartidningen. 2000;97:1668–1670.
    1. Werner R.A., Andary M. Carpal tunnel syndrome: Pathophysiology and clinical neurophysiology. Clin. Neurophysiol. 2002;113:1373–1381. doi: 10.1016/S1388-2457(02)00169-4.
    1. Padua L., Coraci D., Erra C., Pazzaglia C., Paolasso I., Loreti C., Caliandro P., Hobson-Webb L.D. Carpal tunnel syndrome: Clinical features, diagnosis, and management. Lancet Neurol. 2016;15:1273–1284. doi: 10.1016/S1474-4422(16)30231-9.
    1. Uchiyama S., Itsubo T., Nakamura K., Kato H., Yasutomi T., Momose T. Current concepts of carpal tunnel syndrome: Pathophysiology, treatment, and evaluation. J. Orthop. Sci. 2010;15:1–13. doi: 10.1007/s00776-009-1416-x.
    1. Chang K.V., Wu W.T., Ozcakar L. Ultrasound imaging and guidance in peripheral nerve entrapment: Hydrodissection highlighted. Pain. Manag. 2020;10:97–106. doi: 10.2217/pmt-2019-0056.
    1. Bland J.D.P. Hydrodissection for treatment of carpal tunnel syndrome. Muscle Nerve. 2017;57:4–5. doi: 10.1002/mus.25759.
    1. Wu Y.T., Ke M.J., Chou Y.C., Chang C.Y., Lin C.Y., Li T.Y., Shih F.M., Chen L.C. Effect of radial shock wave therapy for carpal tunnel syndrome: A prospective randomized, double-blind, placebo-controlled trial. J. Orthop. Res. 2016;34:977–984. doi: 10.1002/jor.23113.
    1. O’Connor D., Marshall S., Massy-Westropp N. Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2003;2003:CD003219. doi: 10.1002/14651858.CD003219.
    1. Bland J.D. Treatment of carpal tunnel syndrome. Muscle Nerve. 2007;36:167–171. doi: 10.1002/mus.20802.
    1. Lauder A., Mithani S., Leversedge F.J. Management of Recalcitrant Carpal Tunnel Syndrome. J. Am. Acad. Orthop. Surg. 2019;27:551–562. doi: 10.5435/JAAOS-D-18-00004.
    1. Hoogendam L., Bakx J.A.C., Souer J.S., Slijper H.P., Andrinopoulou E.R., Selles R.W., Hand Wrist Study G. Predicting Clinically Relevant Patient-Reported Symptom Improvement After Carpal Tunnel Release: A Machine Learning Approach. Neurosurgery. 2022;90:106–113. doi: 10.1227/NEU.0000000000001749.
    1. Brown R.A., Gelberman R.H., Seiler J.G., 3rd, Abrahamsson S.O., Weiland A.J., Urbaniak J.R., Schoenfeld D.A., Furcolo D. Carpal tunnel release. A prospective, randomized assessment of open and endoscopic methods. J. Bone Jt. Surg. Am. Vol. 1993;75:1265–1275. doi: 10.2106/00004623-199309000-00002.
    1. Agee J.M., Peimer C.A., Pyrek J.D., Walsh W.E. Endoscopic carpal tunnel release: A prospective study of complications and surgical experience. J. Hand Surg. 1995;20:165–171; discussion 172. doi: 10.1016/S0363-5023(05)80001-2.
    1. Li Y., Luo W., Wu G., Cui S., Zhang Z., Gu X. Open versus endoscopic carpal tunnel release: A systematic review and meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2020;21:272. doi: 10.1186/s12891-020-03306-1.
    1. Sayegh E.T., Strauch R.J. Open versus endoscopic carpal tunnel release: A meta-analysis of randomized controlled trials. Clin. Orthop. Relat. Res. 2015;473:1120–1132. doi: 10.1007/s11999-014-3835-z.
    1. Nakamichi K., Tachibana S., Yamamoto S., Ida M. Percutaneous carpal tunnel release compared with mini-open release using Ultrasonographic guidance for both techniques. J. Hand Surg. 2010;35:437–445. doi: 10.1016/j.jhsa.2009.12.016.
    1. Ohuchi H., Hattori S., Shinga K., Ichikawa K., Yamada S. Ultrasound-Assisted Endoscopic Carpal Tunnel Release. Arthrosc. Technol. 2016;5:e483–e487. doi: 10.1016/j.eats.2016.01.035.
    1. Evers S., Bryan A.J., Sanders T.L., Selles R.W., Gelfman R., Amadio P.C. Effectiveness of Ultrasound-Guided Compared to Blind Steroid Injections in the Treatment of Carpal Tunnel Syndrome. Arthritis Care Res. 2017;69:1060–1065. doi: 10.1002/acr.23108.
    1. Sites B.D., Brull R. Ultrasound guidance in peripheral regional anesthesia: Philosophy, evidence-based medicine, and techniques. Curr. Opin. Anaesthesiol. 2006;19:630–639. doi: 10.1097/ACO.0b013e3280101423.
    1. Petrover D., Hakime A., Silvera J., Richette P., Nizard R. Ultrasound-Guided Surgery for Carpal Tunnel Syndrome: A New Interventional Procedure. Semin. Interv. Radiol. 2018;35:248–254. doi: 10.1055/s-0038-1673360.
    1. Rowe N.M., Michaels J.t., Soltanian H., Dobryansky M., Peimer C.A., Gurtner G.C. Sonographically guided percutaneous carpal tunnel release: An anatomic and cadaveric study. Ann. Plast Surg. 2005;55:52–56; discussion 56. doi: 10.1097/01.sap.0000168281.77528.02.
    1. Tumpaj T., Potocnik Tumpaj V., Albano D., Snoj Z. Ultrasound-guided carpal tunnel injections. Radiol. Oncol. 2022;56:14–22. doi: 10.2478/raon-2022-0004.
    1. Buntragulpoontawee M., Chang K.V., Vitoonpong T., Pornjaksawan S., Kitisak K., Saokaew S., Kanchanasurakit S. The Effectiveness and Safety of Commonly Used Injectates for Ultrasound-Guided Hydrodissection Treatment of Peripheral Nerve Entrapment Syndromes: A Systematic Review. Front. Pharmacol. 2020;11:621150. doi: 10.3389/fphar.2020.621150.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.
    1. Leite J.C., Jerosch-Herold C., Song F. A systematic review of the psychometric properties of the Boston Carpal Tunnel Questionnaire. BMC Musculoskelet Disord. 2006;7:78. doi: 10.1186/1471-2474-7-78.
    1. Higgins S.J., Page M.J., Elbers R.G., Sterne J.A.C., editors. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane, Wiley; West Sussex, UK: 2022. Chapter 8: Assessing risk of bias in a randomized trial. Version 6.3.
    1. Munn Z., Barker T.H., Moola S., Tufanaru C., Stern C., McArthur A., Stephenson M., Aromataris E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020;18:2127–2133. doi: 10.11124/JBISRIR-D-19-00099.
    1. Moola S., Munn Z., Tufanaru C., Aromataris E., Sears K., Sfetcu R., Currie M., Qureshi R., Mattis P., Lisy K., et al. JBI Manual for Evidence Synthesis. Wolters Kluwer Health; Philadelphia, PA, USA: 2020. Chapter 7: Systematic reviews of etiology and risk.
    1. ReviewManager (RevMan) is Cochrane’s Bespoke Software for Writing Cochrane Reviews. [(accessed on 2 January 2023)]. Available online: .
    1. De Kleermaeker F., Boogaarts H.D., Meulstee J., Verhagen W.I.M. Minimal clinically important difference for the Boston Carpal Tunnel Questionnaire: New insights and review of literature. J. Hand Surg. Eur. Vol. 2019;44:283–289. doi: 10.1177/1753193418812616.
    1. Kim J.K., Jeon S.H. Minimal clinically important differences in the Carpal Tunnel Questionnaire after carpal tunnel release. J. Hand Surg. Eur. Vol. 2013;38:75–79. doi: 10.1177/1753193412442137.
    1. Ustun N., Tok F., Yagz A.E., Kizil N., Korkmaz I., Karazincir S., Okuyucu E., Turhanoglu A.D. Ultrasound-guided vs. blind steroid injections in carpal tunnel syndrome: A single-blind randomized prospective study. Am. J. Phys. Med. Rehabil. 2013;92:999–1004. doi: 10.1097/PHM.0b013e31829b4d72.
    1. Lee J.Y., Park Y., Park K.D., Lee J.K., Lim O.K. Effectiveness of ultrasound-guided carpal tunnel injection using in-plane ulnar approach: A prospective, randomized, single-blinded study. Medicine. 2014;93:e350. doi: 10.1097/MD.0000000000000350.
    1. Makhlouf T., Emil N.S., Sibbitt W.L., Jr., Fields R.A., Bankhurst A.D. Outcomes and cost-effectiveness of carpal tunnel injections using sonographic needle guidance. Clin. Rheumatol. 2014;33:849–858. doi: 10.1007/s10067-013-2438-5.
    1. Eslamian F., Eftekharsadat B., Babaei-Ghazani A., Jahanjoo F., Zeinali M. A Randomized Prospective Comparison of Ultrasound-Guided and Landmark-Guided Steroid Injections for Carpal Tunnel Syndrome. J. Clin. Neurophysiol. 2017;34:107–113. doi: 10.1097/WNP.0000000000000342.
    1. Karaahmet Ö.Z., Gürçay E., Kara M., Serçe A., Kıraç Ünal Z., Çakcı A. Comparing the effectiveness of ultrasound-guided versus blind steroid injection in the treatment of severe carpal tunnel syndrome. Turk. J. Med. Sci. 2017;47:1785–1790. doi: 10.3906/sag-1704-97.
    1. Wang J.C., Liao K.K., Lin K.P., Chou C.L., Yang T.F., Huang Y.F., Wang K.A., Chiu J.W. Efficacy of Combined Ultrasound-Guided Steroid Injection and Splinting in Patients With Carpal Tunnel Syndrome: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017;98:947–956. doi: 10.1016/j.apmr.2017.01.018.
    1. Chen P.C., Wang L.Y., Pong Y.P., Hsin Y.J., Liaw M.Y., Chiang C.W. Effectiveness of ultrasound-guided vs. direct approach corticosteroid injections for carpal tunnel syndrome: A double-blind randomized controlled trial. J. Rehabil. Med. 2018;50:200–208. doi: 10.2340/16501977-2308.
    1. Babaei-Ghazani A., Nikbakht N., Forogh B., Raissi G.R., Ahadi T., Ebadi S., Roomizadeh P., Fadavi H.R., Raeissadat S.A., Eftekharsadat B. Comparison Between Effectiveness of Ultrasound-Guided Corticosteroid Injection Above Versus Below the Median Nerve in Mild to Moderate Carpal Tunnel Syndrome: A Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2018;97:407–413. doi: 10.1097/PHM.0000000000000877.
    1. Salman Roghani R., Holisaz M.T., Tarkashvand M., Delbari A., Gohari F., Boon A.J., Lokk J. Different doses of steroid injection in elderly patients with carpal tunnel syndrome: A triple-blind, randomized, controlled trial. Clin. Interv. Aging. 2018;13:117–124. doi: 10.2147/CIA.S151290.
    1. Roh Y.H., Hwangbo K., Gong H.S., Baek G.H. Comparison of Ultrasound-Guided Versus Landmark-Based Corticosteroid Injection for Carpal Tunnel Syndrome: A Prospective Randomized Trial. J. Hand Surg. 2019;44:304–310. doi: 10.1016/j.jhsa.2019.02.007.
    1. Rayegani S.M., Raeissadat S.A., Ahmadi-Dastgerdi M., Bavaghar N., Rahimi-Dehgolan S. Comparing The Efficacy Of Local Triamcinolone Injection In Carpal Tunnel Syndrome Using Three Different Approaches with or without Ultrasound Guidance. J. Pain Res. 2019;12:2951–2958. doi: 10.2147/JPR.S212948.
    1. Hsu P.C., Liao K.K., Lin K.P., Chiu J.W., Wu P.Y., Chou C.L., Wang N.Y., Wang J.C. Comparison of Corticosteroid Injection Dosages in Mild to Moderate Idiopathic Carpal Tunnel Syndrome: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020;101:1857–1864. doi: 10.1016/j.apmr.2020.06.018.
    1. Babaei-Ghazani A., Forogh B., Raissi G.R., Ahadi T., Eftekharsadat B., Yousefi N., Rahimi-Dehgolan S., Moradi K. Ultrasound-Guided Corticosteroid Injection in Carpal Tunnel Syndrome: Comparison Between Radial and Ulnar Approaches. J. Pain Res. 2020;13:1569–1578. doi: 10.2147/JPR.S248600.
    1. Wang J.C., Hsu P.C., Wang K.A., Chang K.V. Ultrasound-Guided Triamcinolone Acetonide Hydrodissection for Carpal Tunnel Syndrome: A Randomized Controlled Trial. Front. Med. 2021;8:742724. doi: 10.3389/fmed.2021.742724.
    1. Mathew M.M., Gaur R., Gonnade N., Asthana S.S., Ghuleliya R. Efficacy of Ultrasound-Guided Particulate Versus Nonparticulate Steroid Injection in Carpal Tunnel Syndrome: An Open-Label Randomized Control Trial. Cureus. 2022;14:e21591. doi: 10.7759/cureus.21591.
    1. Mezian K., SobotovÁ K., Kuliha M., Chang K.V., CeÉ J., AngerovÁ Y., ÖzÇakar L. Ultrasound-guided perineural vs. peritendinous corticosteroid injections in carpal tunnel syndrome: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2021;57:775–782. doi: 10.23736/S1973-9087.21.06682-X.
    1. Wu Y.T., Ho T.Y., Chou Y.C., Ke M.J., Li T.Y., Tsai C.K., Chen L.C. Six-month Efficacy of Perineural Dextrose for Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial. Mayo Clin. Proc. 2017;92:1179–1189. doi: 10.1016/j.mayocp.2017.05.025.
    1. Wu Y.T., Ke M.J., Ho T.Y., Li T.Y., Shen Y.P., Chen L.C. Randomized double-blinded clinical trial of 5% dextrose versus triamcinolone injection for carpal tunnel syndrome patients. Ann. Neurol. 2018;84:601–610. doi: 10.1002/ana.25332.
    1. Lin M.T., Liao C.L., Hsiao M.Y., Hsueh H.W., Chao C.C., Wu C.H. Volume Matters in Ultrasound-Guided Perineural Dextrose Injection for Carpal Tunnel Syndrome: A Randomized, Double-Blinded, Three-Arm Trial. Front. Pharmacol. 2020;11:625830. doi: 10.3389/fphar.2020.625830.
    1. Lin M.-T., Liu I.-C., Syu W.-T., Kuo P.-L., Wu C.-H. Effect of Perineural Injection with Different Dextrose Volumes on Median Nerve Size, Elasticity and Mobility in Hands with Carpal Tunnel Syndrome. Diagnostics. 2021;11:849. doi: 10.3390/diagnostics11050849.
    1. Wu Y.T., Ho T.Y., Chou Y.C., Ke M.J., Li T.Y., Huang G.S., Chen L.C. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: A prospective randomized, single-blind controlled trial. Sci. Rep. 2017;7:94. doi: 10.1038/s41598-017-00224-6.
    1. Malahias M.A., Nikolaou V.S., Johnson E.O., Kaseta M.K., Kazas S.T., Babis G.C. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: A placebo-controlled clinical study. J. Tissue Eng. Regen. Med. 2018;12:e1480–e1488. doi: 10.1002/term.2566.
    1. Senna M.K., Shaat R.M., Ali A.A.A. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome. Clin. Rheumatol. 2019;38:3643–3654. doi: 10.1007/s10067-019-04719-7.
    1. Shen Y.P., Li T.Y., Chou Y.C., Ho T.Y., Ke M.J., Chen L.C., Wu Y.T. Comparison of perineural platelet-rich plasma and dextrose injections for moderate carpal tunnel syndrome: A prospective randomized, single-blind, head-to-head comparative trial. J. Tissue Eng. Regen. Med. 2019;13:2009–2017. doi: 10.1002/term.2950.
    1. Chen S.R., Shen Y.P., Ho T.Y., Li T.Y., Su Y.C., Chou Y.C., Chen L.C., Wu Y.T. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial. Arch. Phys. Med. Rehabil. 2021;102:951–958. doi: 10.1016/j.apmr.2020.12.025.
    1. Su Y.C., Li T.Y., Ho T.Y., Chen L.C., Wu Y.T. The efficacy of hyaluronic acid for carpal tunnel syndrome: A randomized double-blind trial. Pain Med. 2021;22:2676–2685. doi: 10.1093/pm/pnab109.
    1. Alsaeid M.A. Dexamethasone versus Hyaluronidase as an Adjuvant to Local Anesthetics in the Ultrasound-guided Hydrodissection of the Median Nerve for the Treatment of Carpal Tunnel Syndrome Patients. Anesth. Essays Res. 2019;13:417–422. doi: 10.4103/aer.AER_104_19.
    1. Elawamy A., Hassanien M., Hamed A., Roushdy A.S.I., Abass N.A., Mohammed G., Hasan M., Kamel E.Z. Efficacy of Hyalase Hydrodissection in the Treatment of Carpal Tunnel Syndrome: A Randomized, Double-Blind, Controlled, Clinical Trial. Pain Physician. 2020;23:E175–E183.
    1. Kamel S.R., Sadek H.A., Hamed A., Sayed O.A., Mahmud M.H., Mohamed F.A., El Sagher G.M., Aly L.H. Ultrasound-guided insulin injection for carpal tunnel syndrome in type 2 diabetes mellitus patients. Clin. Rheumatol. 2019;38:2933–2940. doi: 10.1007/s10067-019-04638-7.
    1. Forogh B., Mohamadi H., Fadavi H.R., Madani S.P., Aflakian N., Ghazaie F., Babaei-Ghazani A. Comparison of Ultrasound-Guided Local Ozone (O2-O3) Injection Versus Corticosteroid Injection in Patients With Mild to Moderate Carpal Tunnel Syndrome. Am. J. Phys. Med. Rehabil. 2021;100:168–172. doi: 10.1097/PHM.0000000000001546.
    1. Capa-Grasa A., Rojo-Manaute J.M., Rodriguez F.C., Martin J.V. Ultra minimally invasive sonographically guided carpal tunnel release: An external pilot study. Orthop. Traumatol. Surg. Res. 2014;100:287–292. doi: 10.1016/j.otsr.2013.11.015.
    1. Rojo-Manaute J.M., Capa-Grasa A., Chana-Rodriguez F., Perez-Mananes R., Rodriguez-Maruri G., Sanz-Ruiz P., Munoz-Ledesma J., Aburto-Bernardo M., Esparragoza-Cabrera L., Cerro-Gutierrez M.D., et al. Ultra-Minimally Invasive Ultrasound-Guided Carpal Tunnel Release: A Randomized Clinical Trial. J. Ultrasound Med. 2016;35:1149–1157. doi: 10.7863/ultra.15.07001.
    1. Zhang S., Wang F., Ke S., Lin C., Liu C., Xin W., Wu S., Ma C. The Effectiveness of Ultrasound-Guided Steroid Injection Combined with Miniscalpel-Needle Release in the Treatment of Carpal Tunnel Syndrome vs. Steroid Injection Alone: A Randomized Controlled Study. BioMed Res. Int. 2019;2019:9498656. doi: 10.1155/2019/9498656.
    1. de la Fuente J., Aramendi J.F., Ibanez J.M., Blasi M., Vazquez A., Aurrekoetxea J.J., Davila F. Minimally invasive ultrasound-guided vs. open release for carpal tunnel syndrome in working population: A randomized controlled trial. J. Clin. Ultrasound. 2021;49:693–703. doi: 10.1002/jcu.23019.
    1. Hsu Y.C., Yang F.C., Hsu H.H., Huang G.S. Ultrasound-Guided Corticosteroid Injection in Patients with Carpal Tunnel Syndrome: Efficacy of Intra-Epineurial Injection. Ultraschall Med. 2018;39:334–342. doi: 10.1055/s-0043-120109.
    1. Yeom J.W., Cho J.H., Kim S.J., Lee H.I. Cross-Sectional Area of the Median Nerve as a Prognostic Indicator in Carpal Tunnel Syndrome Treated With Local Steroid Injection. J. Hand Surg. 2021;48:85.e1–85.e10. doi: 10.1016/j.jhsa.2021.09.022.
    1. Guven S.C., Ozcakar L., Kaymak B., Kara M., Akinci A. Short-term effectiveness of platelet-rich plasma in carpal tunnel syndrome: A controlled study. J. Tissue Eng. 2019;13:709–714. doi: 10.1002/term.2815.
    1. Guo X.Y., Xiong M.X., Lu M., Cheng X.Q., Wu Y.Y., Chen S.Y., Chen K., Zhou Q.D., Wang L., Tan L., et al. Ultrasound-guided needle release of the transverse carpal ligament with and without corticosteroid injection for the treatment of carpal tunnel syndrome. J. Orthop. Surg. Res. 2018;13:69. doi: 10.1186/s13018-018-0771-8.
    1. Burnham R.S., Loh E.Y., Rambaransingh B., Roberts S.L., Agur A.M., Playfair L.D. A Controlled Trial Evaluating the Safety and Effectiveness of Ultrasound-Guided Looped Thread Carpal Tunnel Release. Hand. 2021;16:73–80. doi: 10.1177/1558944719842199.
    1. Asserson D.B., North T.J., Rhee P.C., Bishop A.T., Brault J.S., Shin A.Y. Return to work following ultrasound guided thread carpal tunnel release versus open carpal tunnel release: A comparative study. J. Hand Surg. Eur. Vol. 2022;47:359–363. doi: 10.1177/17531934211051276.
    1. Li T.Y., Chen S.R., Shen Y.P., Chang C.Y., Su Y.C., Chen L.C., Wu Y.T. Long-Term Outcome after Perineural Injection with 5% Dextrose for Carpal Tunnel Syndrome: A Retrospective Follow-Up Study. Rheumatology. 2021;60:881–887. doi: 10.1093/rheumatology/keaa361.
    1. Chao T.C., Reeves K.D., Lam K.H.S., Li T.Y., Wu Y.T. The Effectiveness of Hydrodissection with 5% Dextrose for Persistent and Recurrent Carpal Tunnel Syndrome: A Retrospective Study. J. Clin. Med. 2022;11:3705. doi: 10.3390/jcm11133705.
    1. Malahias M.A., Johnson E.O., Babis G.C., Nikolaou V.S. Single injection of platelet-rich plasma as a novel treatment of carpal tunnel syndrome. Neural Regen. Res. 2015;10:1856–1859.
    1. Chern T.C., Kuo L.C., Shao C.J., Wu T.T., Wu K.C., Jou I.M. Ultrasonographically Guided Percutaneous Carpal Tunnel Release: Early Clinical Experiences and Outcomes. Arthroscopy. 2015;31:2400–2410. doi: 10.1016/j.arthro.2015.06.023.
    1. Guo D., Tang Y., Ji Y., Sun T., Guo J., Guo D. A non-scalpel technique for minimally invasive surgery: Percutaneously looped thread transection of the transverse carpal ligament. Hand. 2015;10:40–48. doi: 10.1007/s11552-014-9656-4.
    1. Guo D., Guo D., Guo J., Schmidt S.C., Lytie R.M. A Clinical Study of the Modified Thread Carpal Tunnel Release. Hand. 2017;12:453–460. doi: 10.1177/1558944716668831.
    1. Petrover D., Silvera J., De Baere T., Vigan M., Hakime A. Percutaneous Ultrasound-Guided Carpal Tunnel Release: Study Upon Clinical Efficacy and Safety. Cardiovasc. Interv. Radiol. 2017;40:568–575. doi: 10.1007/s00270-016-1545-5.
    1. Henning P.T., Yang L., Awan T., Lueders D., Pourcho A.M. Minimally Invasive Ultrasound-Guided Carpal Tunnel Release: Preliminary Clinical Results. J. Ultrasound Med. 2018;37:2699–2706. doi: 10.1002/jum.14618.
    1. Luanchumroen N. Ultrasound-guided percutaneous carpal tunnel release with hook blade. J. Med. Assoc. Thail. 2019;102:481–488.
    1. Wang P.H., Li C.L., Shao C.J., Wu K.C., Chern T.C., Jou I.M. Ultrasound-guided percutaneous carpal tunnel release in patients on hemodialysis: Early experiences and clinical outcomes. Ther. Clin. Risk Manag. 2019;15:711–717. doi: 10.2147/TCRM.S206362.
    1. Chappell C.D., Beckman J.P., Baird B.C., Takke A.V. Ultrasound (US) Changes in the Median Nerve Cross-Sectional Area After Microinvasive US-Guided Carpal Tunnel Release. J. Ultrasound Med. 2020;39:693–702. doi: 10.1002/jum.15146.
    1. Hebbard P., Thomas P., Fransch S.V., Cichowitz A., Franzi S. Microinvasive Carpal Tunnel Release Using a Retractable Needle-Mounted Blade. J. Ultrasound Med. 2021;40:1451–1458. doi: 10.1002/jum.15509.
    1. Joseph A.E., Leiby B.M., Beckman J.P. Clinical Results of Ultrasound-Guided Carpal Tunnel Release Performed by a Primary Care Sports Medicine Physician. J. Ultrasound Med. 2020;39:441–452. doi: 10.1002/jum.15120.
    1. Kamel S.I., Freid B., Pomeranz C., Halpern E.J., Nazarian L.N. Minimally Invasive Ultrasound-Guided Carpal Tunnel Release Improves Long-Term Clinical Outcomes in Carpal Tunnel Syndrome. AJR Am. J. Roentgenol. 2021;217:460–468. doi: 10.2214/AJR.20.24383.
    1. Wang P.H., Wu P.T., Jou I.M. Ultrasound-guided percutaneous carpal tunnel release: 2-year follow-up of 641 hands. J. Hand Surg. Eur. Vol. 2021;46:305–307. doi: 10.1177/1753193420948824.
    1. Leiby B.M., Beckman J.P., Joseph A.E. Long-term Clinical Results of Carpal Tunnel Release Using Ultrasound Guidance. Hand. 2022;17:1074–1081. doi: 10.1177/1558944720988080.
    1. Loizides A., Honold S., Skalla-Oberherber E., Gruber L., Loscher W., Moriggl B., Konschake M., Gruber H. Ultrasound-Guided Minimal Invasive Carpal Tunnel Release: An Optimized Algorithm. Cardiovasc. Interv. Radiol. 2021;44:976–981. doi: 10.1007/s00270-021-02789-2.
    1. Lee S.H., Choi H.H., Chang M.C. Effect of Ultrasound-Guided Partial Release of the Transverse Carpal Ligament with a Needle in Patients with Refractory Carpal Tunnel Syndrome. Pain Physician. 2022;25:E141–E145.
    1. Fowler J.R., Chung K.C., Miller L.E. Multicenter pragmatic study of carpal tunnel release with ultrasound guidance. Expert Rev. Med. Devices. 2022;19:273–280. doi: 10.1080/17434440.2022.2048816.
    1. Cass S.P. Ultrasound-Guided Nerve Hydrodissection: What is it? A Review of the Literature. Curr. Sport. Med. Rep. 2016;15:20–22. doi: 10.1249/JSR.0000000000000226.
    1. Wu Y.T., Chen S.R., Li T.Y., Ho T.Y., Shen Y.P., Tsai C.K., Chen L.C. Nerve hydrodissection for carpal tunnel syndrome: A prospective, randomized, double-blind, controlled trial. Muscle Nerve. 2019;59:174–180. doi: 10.1002/mus.26358.
    1. Lam S.K.H., Reeves K.D., Cheng A.L. Transition from Deep Regional Blocks toward Deep Nerve Hydrodissection in the Upper Body and Torso: Method Description and Results from a Retrospective Chart Review of the Analgesic Effect of 5% Dextrose Water as the Primary Hydrodissection Injectate to Enhance Safety. BioMed Res. Int. 2017;2017:7920438. doi: 10.1155/2017/7920438.
    1. Lam K.H.S., Hung C.Y., Chiang Y.P., Onishi K., Su D.C.J., Clark T.B., Reeves K.D. Ultrasound-Guided Nerve Hydrodissection for Pain Management: Rationale, Methods, Current Literature, and Theoretical Mechanisms. J. Pain Res. 2020;13:1957–1968. doi: 10.2147/JPR.S247208.
    1. Evers S., Thoreson A.R., Smith J., Zhao C., Geske J.R., Amadio P.C. Ultrasound-guided hydrodissection decreases gliding resistance of the median nerve within the carpal tunnel. Muscle Nerve. 2018;57:25–32. doi: 10.1002/mus.25723.
    1. Chen S.-R., Ho T.-Y., Shen Y.-P., Li T.-Y., Su Y.-C., Lam K.H.S., Chen L.-C., Wu Y.-T. Comparison of short- and long-axis nerve hydrodissection for carpal tunnel syndrome: A prospective randomized, single-blind trial. Int. J. Med. Sci. 2021;18:3488–3497. doi: 10.7150/ijms.63815.
    1. Huisstede B.M., Hoogvliet P., Randsdorp M.S., Glerum S., van Middelkoop M., Koes B.W. Carpal tunnel syndrome. Part I: Effectiveness of nonsurgical treatments–a systematic review. Arch. Phys. Med. Rehabil. 2010;91:981–1004. doi: 10.1016/j.apmr.2010.03.022.
    1. Lam K.H.S., Lai W.W., Ngai H.Y., Wu W.K.R., Wu Y.-T. Commentary: Ultrasound-Guided Triamcinolone Acetonide Hydrodissection for Carpal Tunnel Syndrome: A Randomized Controlled Trial. Front. Med. 2022;8:833862. doi: 10.3389/fmed.2021.833862.
    1. Stark H., Amirfeyz R. Cochrane corner: Local corticosteroid injection for carpal tunnel syndrome. J. Hand Surg. Eur. Vol. 2013;38:911–914. doi: 10.1177/1753193413490848.
    1. Marshall S., Tardif G., Ashworth N. Local corticosteroid injection for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2007;2007:CD001554. doi: 10.1002/14651858.CD001554.pub2.
    1. Wang P.H., Tsai C.L., Lee J.S., Wu K.C., Cheng K.I., Jou I.M. Effects of topical corticosteroids on the sciatic nerve: An experimental study to adduce the safety in treating carpal tunnel syndrome. J. Hand Surg. Eur. Vol. 2011;36:236–243. doi: 10.1177/1753193410390760.
    1. Peters-Veluthamaningal C., Winters J.C., Groenier K.H., Meyboom-de Jong B. Randomised controlled trial of local corticosteroid injections for carpal tunnel syndrome in general practice. BMC Fam. Pract. 2010;11:54. doi: 10.1186/1471-2296-11-54.
    1. Kothari M.J.J.U., Waltham M.A., Disponível E.M. Carpal Tunnel Syndrome: Treatment and Prognosis. 2019. [(accessed on 1 October 2022)]. Available online: .
    1. Amato A.A., Barohn R.J. Peripheral Neuropathy. In: Jameson J.L., Fauci A.S., Kasper D.L., Hauser S.L., Longo D.L., Loscalzo J., editors. Harrison’s Principles of Internal Medicine, 20e. McGraw-Hill Education; New York, NY, USA: 2018.
    1. Yelland M.J., Sweeting K.R., Lyftogt J.A., Ng S.K., Scuffham P.A., Evans K.A. Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: A randomised trial. Br. J. Sport. Med. 2011;45:421–428. doi: 10.1136/bjsm.2009.057968.
    1. Rabago D., Patterson J.J., Mundt M., Kijowski R., Grettie J., Segal N.A., Zgierska A. Dextrose prolotherapy for knee osteoarthritis: A randomized controlled trial. Ann. Fam. Med. 2013;11:229–237. doi: 10.1370/afm.1504.
    1. Bertrand H., Kyriazis M., Reeves K.D., Lyftogt J., Rabago D. Topical Mannitol Reduces Capsaicin-Induced Pain: Results of a Pilot-Level, Double-Blind, Randomized Controlled Trial. PM&R. 2015;7:1111–1117.
    1. Murakawa Y., Zhang W., Pierson C.R., Brismar T., Ostenson C.G., Efendic S., Sima A.A. Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab. Res. Rev. 2002;18:473–483. doi: 10.1002/dmrr.326.
    1. Zamami Y., Takatori S., Yamawaki K., Miyashita S., Mio M., Kitamura Y., Kawasaki H. Acute hyperglycemia and hyperinsulinemia enhance adrenergic vasoconstriction and decrease calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats. Hypertens Res. 2008;31:1033–1044. doi: 10.1291/hypres.31.1033.
    1. Wei Z., Wang L., Han J., Song J., Yao L., Shao L., Sun Z., Zheng L. Decreased expression of transient receptor potential vanilloid 1 impaires the postischemic recovery of diabetic mouse hearts. Circ. J. 2009;73:1127–1132. doi: 10.1253/circj.CJ-08-0945.
    1. Wu Y.T., Chen Y.P., Lam KH S., Reeves K.D., Lin J.A., Kuo C.Y. Mechanism of glucose water as a neural injection: A perspective on neuroinflammation. Life. 2022;12:832. doi: 10.3390/life12060832.
    1. Pamir N., McMillen T.S., Kaiyala K.J., Schwartz M.W., LeBoeuf R.C. Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology. 2009;150:4124–4134. doi: 10.1210/en.2009-0137.
    1. Lew J.H., Naruishi K., Kajiura Y., Nishikawa Y., Ikuta T., Kido J.I., Nagata T. High Glucose-Mediated Cytokine Regulation in Gingival Fibroblasts and THP-1 Macrophage: A Possible Mechanism of Severe Periodontitis with Diabetes. Cell Physiol. Biochem. 2018;50:973–986. doi: 10.1159/000494481.
    1. Wieman H.L., Wofford J.A., Rathmell J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell. 2007;18:1437–1446. doi: 10.1091/mbc.e06-07-0593.
    1. Shikhman A.R., Brinson D.C., Valbracht J., Lotz M.K. Cytokine regulation of facilitated glucose transport in human articular chondrocytes. J. Immunol. 2001;167:7001–7008. doi: 10.4049/jimmunol.167.12.7001.
    1. Ye J., Keller J.N. Regulation of energy metabolism by inflammation: A feedback response in obesity and calorie restriction. Aging. 2010;2:361–368. doi: 10.18632/aging.100155.
    1. Bastami F., Vares P., Khojasteh A. Healing Effects of Platelet-Rich Plasma on Peripheral Nerve Injuries. J. Craniofacial Surg. 2017;28:e49–e57. doi: 10.1097/SCS.0000000000003198.
    1. Osterman C., McCarthy M.B.R., Cote M.P., Beitzel K., Bradley J., Polkowski G., Mazzocca A.D. Platelet-rich plasma increases anti-inflammatory markers in a human coculture model for osteoarthritis. Am. J. Sport. Med. 2015;43:1474–1484. doi: 10.1177/0363546515570463.
    1. Lai C.Y., Li T.Y., Lam K.H.S., Chou Y.C., Hueng D.Y., Chen L.C., Wu Y.T. The long-term analgesic effectiveness of platelet-rich plasma injection for carpal tunnel syndrome: A cross-sectional cohort study. Pain Med. 2022;23:1249–1258. doi: 10.1093/pm/pnac011.
    1. Acunzo G., Guida M., Pellicano M., Tommaselli G.A., Di Spiezio Sardo A., Bifulco G., Cirillo D., Taylor A., Nappi C. Effectiveness of auto-cross-linked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic adhesiolysis: A prospective, randomized, controlled study. Hum. Reprod. 2003;18:1918–1921. doi: 10.1093/humrep/deg368.
    1. Belluco C., Meggiolaro F., Pressato D., Pavesio A., Bigon E., Dona M., Forlin M., Nitti D., Lise M. Prevention of postsurgical adhesions with an autocrosslinked hyaluronan derivative gel. J. Surg. Res. 2001;100:217–221. doi: 10.1006/jsre.2001.6248.
    1. Ikeda K., Yamauchi D., Osamura N., Hagiwara N., Tomita K. Hyaluronic acid prevents peripheral nerve adhesion. Br. J. Plast. Surg. 2003;56:342–347. doi: 10.1016/S0007-1226(03)00197-8.
    1. Pucciarelli S., Codello L., Rosato A., Del Bianco P., Vecchiato G., Lise M. Effect of antiadhesive agents on peritoneal carcinomatosis in an experimental model. Br. J. Surg. 2003;90:66–71. doi: 10.1002/bjs.4006.
    1. Smit X., van Neck J.W., Afoke A., Hovius S.E. Reduction of neural adhesions by biodegradable autocrosslinked hyaluronic acid gel after injury of peripheral nerves: An experimental study. J. Neurosurg. 2004;101:648–652. doi: 10.3171/jns.2004.101.4.0648.
    1. Dunn A.L., Heavner J.E., Racz G., Day M. Hyaluronidase: A review of approved formulations, indications and off-label use in chronic pain management. Expert Opin. Biol. Ther. 2010;10:127–131. doi: 10.1517/14712590903490382.
    1. Yeo G., Gupta A., Ding G., Skerman H., Khatun M., Melsom D. Pain Levels after Local Anaesthetic with or without Hyaluronidase in Carpal Tunnel Release: A Randomised Controlled Trial. Adv. Orthop. 2015;2015:784329. doi: 10.1155/2015/784329.
    1. Courtiss E.H., Ransil B.J., Russo J. The effects of hyaluronidase on local anesthesia: A prospective, randomized, controlled, double-blind study. Plast. Reconstr. Surg. 1995;95:876–883. doi: 10.1097/00006534-199504001-00017.
    1. Sloane J.A., Batt C., Ma Y., Harris Z.M., Trapp B., Vartanian T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. USA. 2010;107:11555–11560. doi: 10.1073/pnas.1006496107.
    1. Ibrahim S.E., Hussein A. New role for insulin injection in the treatment of idiopathic carpal tunnel syndrome. Egypt. Rheumatol. Rehabil. 2016;43:157–162. doi: 10.4103/1110-161X.192256.
    1. Ezeldin M., Leonardi M., Princiotta C., Dall’olio M., Tharwat M., Zaki M., Abdel-Wanis M.E., Cirillo L. Percutaneous ozone nucleolysis for lumbar disc herniation. Neuroradiology. 2018;60:1231–1241. doi: 10.1007/s00234-018-2083-4.
    1. McShane J.M., Slaff S., Gold J.E., Nazarian L.N. Sonographically guided percutaneous needle release of the carpal tunnel for treatment of carpal tunnel syndrome: Preliminary report. J. Ultrasound Med. 2012;31:1341–1349. doi: 10.7863/jum.2012.31.9.1341.
    1. Levine D.W., Simmons B.P., Koris M.J., Daltroy L.H., Hohl G.G., Fossel A.H., Katz J.N. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. J. Bone Jt. Surg. Am. Vol. 1993;75:1585–1592. doi: 10.2106/00004623-199311000-00002.
    1. Beaton D.E., Wright J.G., Katz J.N., Upper Extremity Collaborative G. Development of the QuickDASH: Comparison of three item-reduction approaches. J. Bone Jt. Surg. Am. 2005;87:1038–1046. doi: 10.2106/JBJS.D.02060.
    1. Franchignoni F., Vercelli S., Giordano A., Sartorio F., Bravini E., Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH) J. Orthop. Sport. Phys. Ther. 2014;44:30–39. doi: 10.2519/jospt.2014.4893.
    1. Lam K.H.S., Lai W.W., Ngai H.Y., Wu W.K.R., Wu Y.-T. Comment on the safety of the ultrasound-guided hydrodissection technique for carpal tunnel syndrome. J. Ultrasound. 2022 doi: 10.1007/s40477-022-00664-5.
    1. Lam K.H.S., Lai W.W., Ngai H.Y., Wu W.K.R. Practical considerations for ultrasound-guided hydrodissection in Pronator Teres Syndrome. Pain Med. 2022;23:221–223. doi: 10.1093/pm/pnab277.

Source: PubMed

3
Předplatit