The Effects of Intraoperative Hypothermia on Postoperative Cognitive Function in the Rat Hippocampus and Its Possible Mechanisms

Guangyan Xu, Tianjia Li, Yuguang Huang, Guangyan Xu, Tianjia Li, Yuguang Huang

Abstract

Intraoperative hypothermia is a common complication during operations and is associated with several adverse events. Postoperative cognitive dysfunction (POCD) and its adverse consequences have drawn increasing attention in recent years. There are currently no relevant studies investigating the correlation between intraoperative hypothermia and POCD. The aim of this study was to assess the effects of intraoperative hypothermia on postoperative cognitive function in rats undergoing exploratory laparotomies and to investigate the possible related mechanisms. We used the Y-maze and Morris Water Maze (MWM) tests to assess the rats' postoperative spatial working memory, spatial learning, and memory. The morphological changes in hippocampal neurons were examined by haematoxylin-eosin (HE) staining and hippocampal synaptic plasticity-related protein expression. Activity-regulated cytoskeletal-associated protein (Arc), cyclic adenosine monophosphate-response element-binding protein (CREB), S133-phosphorylated CREB (p-CREB [S133]), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor 1 (AMPAR1), and S831-phosphorylated AMPAR1 (p-AMPAR1 [S831]) were evaluated by Western blotting. Our results suggest a correlation between intraoperative hypothermia and POCD in rats and that intraoperative hypothermia may lead to POCD regarding impairments in spatial working memory, spatial learning, and memory. POCD induced by intraoperative hypothermia might be due to hippocampal neurons damage and decreased expression of synaptic plasticity-related proteins Arc, p-CREB (S133), and p-AMPAR1 (S831).

Keywords: hippocampus; intraoperative hypothermia; postoperative cognitive dysfunction; synaptic plasticity; synaptic plasticity-related protein.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study design to evaluate the effects of intraoperative hypothermia on postoperative cognitive function in rats. (A) Schematic timeline of the experimental procedure; (B) representative image of Y-maze apparatus; (C) representative graph of the MWM apparatus.
Figure 2
Figure 2
The effects of intraoperative hypothermia on the spatial working memory of rats measured by the Y-maze spontaneous alternation. (A) Representative mobile trajectories of rats among different groups; (B) the number of total arm entries of rats from different groups; (C) the total distance moved during 8 min free exploration in the Y-maze; (D) the spontaneous alternation percentage in different groups. Data are expressed as mean ± SEM. * p < 0.05, n = 9–10.
Figure 3
Figure 3
The effects of intraoperative hypothermia on spatial learning and memory of rats were determined by the MWM. (A) The representative swimming trajectories of rats from each group on the last day of training trials; (B) the representative swimming paths of rats from each group in the probe test; (C) the average swimming speeds of rats in different groups on successive MWM training days; (D) the average escape latencies to find the hidden platform across three trials on four consecutive training days; (E) the time spent in the target quadrant in the probe test; (F) the number of platform crossings during the probe test. Data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01 and *** p < 0.001, n = 9–10.
Figure 4
Figure 4
Morphological changes of hippocampal neurons in rats among groups were observed under bright-field illumination using a fluorescence microscopy imaging system. (AC) Representative images of HE staining in hippocampal slices; (D) quantitative analysis of injured neurons with neuronal pyknosis and necrosis in the hippocampal DG region. The white arrow indicates a disorderly nucleus, neuronal pyknosis and necrosis. Magnification: ×40; scale bar: 50 µm. Data are expressed as mean ± SEM. * p < 0.05, n = 4.
Figure 5
Figure 5
Expression levels of hippocampal synaptic plasticity-related proteins in rats and the effects of intraoperative hypothermia. (A) The visualisation of protein bands of CREB, p-CREB (S133), Arc, AMPAR1, p-AMPAR1 (S831), and β-actin; (B) quantitative analysis of CREB expression levels normalised to β-actin band intensities; (C) quantitative analysis of p-CREB (S133) expression levels normalised to CREB band intensities; (D) quantitative analysis of Arc expression levels normalised to β-actin band intensities; (E) quantitative analysis of AMPAR1 expression levels normalised to β-actin band intensities; (F) quantitative analysis of p-AMPAR1 (S831) expression levels normalised to AMPAR1 band intensities. Data are expressed as mean ± SEM. * p < 0.05, ** p < 0.01 and *** p < 0.001, n = 3–4.

References

    1. Sari S., Aksoy S.M., But A. The incidence of inadvertent perioperative hypothermia in patients undergoing general anesthesia and an examination of risk factors. Int. J. Clin. Pract. 2021;75:e14103. doi: 10.1111/ijcp.14103.
    1. Yi J., Lei Y., Xu S., Si Y., Li S., Xia Z., Shi Y., Gu X., Yu J., Xu G., et al. Intraoperative hypothermia and its clinical outcomes in patients undergoing general anesthesia: National study in China. PLoS ONE. 2017;12:e0177221. doi: 10.1371/journal.pone.0177221.
    1. Sun Z., Honar H., Sessler D.I., Dalton J.E., Yang D., Panjasawatwong K., Deroee A.F., Salmasi V., Saager L., Kurz A. Intraoperative core temperature patterns, transfusion requirement, and hospital duration in patients warmed with forced air. Anesthesiology. 2015;122:276–285. doi: 10.1097/ALN.0000000000000551.
    1. Schmied H., Kurz A., Sessler D.I., Kozek S.R.A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet. 1996;347:289–292. doi: 10.1016/S0140-6736(96)90466-3.
    1. Frank S., Fleisher L., Breslow M., Higgins M., Olson K., Kelly S., Beattie C. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA. 1997;277:1127–1134. doi: 10.1001/jama.1997.03540380041029.
    1. Kurz A., Sessler D.I., Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of wound infection and temperature group. N. Engl. J. Med. 1996;334:1209–1215. doi: 10.1056/NEJM199605093341901.
    1. Yi J., Xiang Z., Deng X., Fan T., Fu R., Geng W., Guo R., He N., Li C., Li L., et al. Incidence of Inadvertent Intraoperative Hypothermia and Its Risk Factors in Patients Undergoing General Anesthesia in Beijing: A Prospective Regional Survey. PLoS ONE. 2015;10:e0136136. doi: 10.1371/journal.pone.0136136.
    1. Yi J., Zhan L., Lei Y., Xu S., Si Y., Li S., Xia Z., Shi Y., Gu X., Yu J., et al. Establishment and Validation of a Prediction Equation to Estimate Risk of Intraoperative Hypothermia in Patients Receiving General Anesthesia. Sci. Rep. 2017;7:13927. doi: 10.1038/s41598-017-12997-x.
    1. Needham M.J., Webb C.E., Bryden D.C. Postoperative cognitive dysfunction and dementia: What we need to know and do. Br. J. Anaesth. 2017;119:i115–i125. doi: 10.1093/bja/aex354.
    1. Evered L., Silbert B., Knopman D.S., Scott D.A., DeKosky S.T., Rasmussen L.S., Oh E.S., Crosby G., Berger M., Eckenhoff R.G., et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Br. J. Anaesth. 2018;121:1005–1012. doi: 10.1016/j.bja.2017.11.087.
    1. Skvarc D.R., Berk M., Byrne L.K., Dean O.M., Dodd S., Lewis M., Marriott A., Moore E.M., Morris G., Page R.S., et al. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci. Biobehav. Rev. 2018;84:116–133. doi: 10.1016/j.neubiorev.2017.11.011.
    1. Androsova G., Krause R., Winterer G., Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front. Aging Neurosci. 2015;7:112. doi: 10.3389/fnagi.2015.00112.
    1. Chen C., Gao R., Li M., Wang Q., Chen H., Zhang S., Mao X., Behensky A., Zhang Z., Gan L., et al. Extracellular RNAs-TLR3 signaling contributes to cognitive decline in a mouse model of postoperative cognitive dysfunction. Brain Behav. Immun. 2019;80:439–451. doi: 10.1016/j.bbi.2019.04.024.
    1. Oberman K., Hovens I., de Haan J., Falcao-Salles J., van Leeuwen B., Schoemaker R. Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction. J. Neuroinflam. 2021;18:156. doi: 10.1186/s12974-021-02206-y.
    1. Netto M.B., de Oliveira Junior A.N., Goldim M., Mathias K., Fileti M.E., da Rosa N., Laurentino A.O., de Farias B.X., Costa A.B., Rezin G.T., et al. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav. Immun. 2018;73:661–669. doi: 10.1016/j.bbi.2018.07.016.
    1. Gao S., Zhang S., Zhou H., Tao X., Ni Y., Pei D., Kang S., Yan W., Lu J. Role of mTOR-Regulated Autophagy in Synaptic Plasticity Related Proteins Downregulation and the Reference Memory Deficits Induced by Anesthesia/Surgery in Aged Mice. Front. Aging Neurosci. 2021;13:628541. doi: 10.3389/fnagi.2021.628541.
    1. Xiao J.-Y., Xiong B.-R., Zhang W., Zhou W.-C., Yang H., Gao F., Xiang H.-B., Manyande A., Tian X.-B., Tian Y.-K. PGE2-EP3 signaling exacerbates hippocampus-dependent cognitive impairment after laparotomy by reducing expression levels of hippocampal synaptic plasticity-related proteins in aged mice. CNS Neurosci. Ther. 2018;24:917–929. doi: 10.1111/cns.12832.
    1. Pacheco Estefan D., Sanchez-Fibla M., Duff A., Principe A., Rocamora R., Zhang H., Axmacher N., Verschure P. Coordinated representational reinstatement in the human hippocampus and lateral temporal cortex during episodic memory retrieval. Nat. Commun. 2019;10:2255. doi: 10.1038/s41467-019-09569-0.
    1. Bellmund J.L.S., Gardenfors P., Moser E.I., Doeller C.F. Navigating cognition: Spatial codes for human thinking. Science. 2018;362:eaat6766. doi: 10.1126/science.aat6766.
    1. Borgomaneri S., Battaglia S., Sciamanna G., Tortora F., Laricchiuta D. Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci. BioBehav. Rev. 2021;127:334–352. doi: 10.1016/j.neubiorev.2021.04.036.
    1. Battaglia S., Garofalo S., di Pellegrino G., Starita F. Revaluing the Role of vmPFC in the Acquisition of Pavlovian Threat Conditioning in Humans. J. Neurosci. 2020;44:8491–8500. doi: 10.1523/JNEUROSCI.0304-20.2020.
    1. Battaglia S., Harrison B.J., Fullana M.A. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol. Psychiatry. 2021:1–3. doi: 10.1038/s41380-021-01326-4.
    1. Borgomaneri S., Battaglia S., Garofalo S., Tortora F., Avenanti A., di Pellegrino G. State-Dependent TMS over Prefrontal Cortex Disrupts Fear-Memory Reconsolidation and Prevents the Return of Fear. Curr. Biol. 2020;30:3672–3679.e4. doi: 10.1016/j.cub.2020.06.091.
    1. Mansvelder H.D., Verhoog M.B., Goriounova N.A. Synaptic plasticity in human cortical circuits: Cellular mechanisms of learning and memory in the human brain? Curr. Opin. Neurobiol. 2019;54:186–193. doi: 10.1016/j.conb.2018.06.013.
    1. Borgomaneri S., Serio G., Battaglia S. Please, don’t do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex. 2020;132:404–422. doi: 10.1016/j.cortex.2020.09.002.
    1. Borgomaneri S., Vitale F., Battaglia S., Avenanti A. Early Right Motor Cortex Response to Happy and Fearful Facial Expressions: A TMS Motor-Evoked Potential Study. Brain Sci. 2021;11:1203. doi: 10.3390/brainsci11091203.
    1. Battaglia S., Serio G., Scarpazza C., D’Ausilio A., Borgomaneri S. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav. Res. Ther. 2021;146:103963. doi: 10.1016/j.brat.2021.103963.
    1. Wall M.J., Collins D.R., Chery S.L., Allen Z.D., Pastuzyn E.D., George A.J., Nikolova V.D., Moy S.S., Philpot B.D., Shepherd J.D., et al. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility. Neuron. 2018;98:1124–1132.e7. doi: 10.1016/j.neuron.2018.05.012.
    1. Plath N., Ohana O., Dammermann B., Errington M.L., Schmitz D., Gross C., Mao X., Engelsberg A., Mahlke C., Welzl H., et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron. 2006;52:437–444. doi: 10.1016/j.neuron.2006.08.024.
    1. Gao X., Castro-Gomez S., Grendel J., Graf S., Susens U., Binkle L., Mensching D., Isbrandt D., Kuhl D., Ohana O. Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc. Natl. Acad. Sci. USA. 2018;115:12531–12536. doi: 10.1073/pnas.1810125115.
    1. Benito E., Barco A. CREB’s control of intrinsic and synaptic plasticity: Implications for CREB-dependent memory models. Trends Neurosci. 2010;33:230–240. doi: 10.1016/j.tins.2010.02.001.
    1. Takeo S., Niimura M., Miyake-Takagi K., Nagakura A., Fukatsu T., Ando T., Takagi N., Tanonaka K., Hara J. A possible mechanism for improvement by a cognition-enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral ischaemia in rats. Br. J. Pharmacol. 2003;138:642–654. doi: 10.1038/sj.bjp.0705096.
    1. Landeira B.S., Santana T., Araujo J.A.M., Tabet E.I., Tannous B.A., Schroeder T., Costa M.R. Activity-Independent Effects of CREB on Neuronal Survival and Differentiation during Mouse Cerebral Cortex Development. Cereb. Cortex. 2018;28:538–548. doi: 10.1093/cercor/bhw387.
    1. Sakamoto K., Karelina K., Obrietan K. CREB: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 2011;116:1–9. doi: 10.1111/j.1471-4159.2010.07080.x.
    1. Stewart M., Lau P., Banks G., Bains R.S., Castroflorio E., Oliver P.L., Dixon C.L., Kruer M.C., Kullmann D.M., Acevedo-Arozena A., et al. Loss of Frrs1l disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities. Dis. Model. Mech. 2019;12:dmm036806. doi: 10.1242/dmm.036806.
    1. Palmer C.L., Cotton L., Henley J.M. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol. Rev. 2005;57:253–277. doi: 10.1124/pr.57.2.7.
    1. Zhang D., Watson J.F., Matthews P.M., Cais O., Greger I.H. Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature. 2021;594:454–458. doi: 10.1038/s41586-021-03613-0.
    1. Diering G.H., Huganir R.L. The AMPA Receptor Code of Synaptic Plasticity. Neuron. 2018;100:314–329. doi: 10.1016/j.neuron.2018.10.018.
    1. Yang J.H., Seo S.Y., Oh J.H., Ryu I.S., Kim J., Lee D.K., Ryu Y., Choe E.S. Activation of Protein Kinase G After Repeated Cocaine Administration Is Necessary for the Phosphorylation of alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor GluA1 at Serine 831 in the Rat Nucleus Accumbens. Front. Mol. Neurosci. 2018;11:263. doi: 10.3389/fnmol.2018.00263.
    1. Meilin S., Machicao F., Elmlinger M. Treatment with Actovegin improves spatial learning and memory in rats following transient forebrain ischaemia. J. Cell. Mol. Med. 2014;18:1623–1630. doi: 10.1111/jcmm.12297.
    1. Vorhees C.V., Williams M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116.
    1. Qiu L.L., Pan W., Luo D., Zhang G.F., Zhou Z.Q., Sun X.Y., Yang J.J., Ji M.H. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J. Neuroinflam. 2020;17:23. doi: 10.1186/s12974-019-1695-x.
    1. Ghafouri S., Fathollahi Y., Javan M., Shojaei A., Asgari A., Mirnajafi-Zadeh J. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res. 2016;126:37–44. doi: 10.1016/j.eplepsyres.2016.06.010.
    1. Neves G., Cooke S.F., Bliss T.V.P. Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nat. Rev. Neurosci. 2008;9:65–75. doi: 10.1038/nrn2303.
    1. Zenke F., Agnes E.J., Gerstner W. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 2015;6:6922. doi: 10.1038/ncomms7922.
    1. Vutskits L., Xie Z. Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nat. Rev. Neurosci. 2016;17:705–717. doi: 10.1038/nrn.2016.128.
    1. Alam A., Hana Z., Jin Z., Suen K.C., Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine. 2018;37:547–556. doi: 10.1016/j.ebiom.2018.10.021.
    1. Li L., Li Z., Cao Y., Fan D., Chui D., Guo X. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia. Exp. Ther. Med. 2016;12:161–168. doi: 10.3892/etm.2016.3306.
    1. Colbran R.J. Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. J. Biol. Chem. 2015;290:28594–28595. doi: 10.1074/jbc.R115.696468.
    1. Li Y., He Z., Lv H., Chen W., Chen J. Calpain-2 plays a pivotal role in the inhibitory effects of propofol against TNF-alpha-induced autophagy in mouse hippocampal neurons. J. Cell. Mol. Med. 2020;24:9287–9299. doi: 10.1111/jcmm.15577.
    1. Liu Y., Zhou Q.X., Hou Y.Y., Lu B., Yu C., Chen J., Ling Q.L., Cao J., Chi Z.Q., Xu L., et al. Actin polymerization-dependent increase in synaptic Arc/Arg3.1 expression in the amygdala is crucial for the expression of aversive memory associated with drug withdrawal. J. Neurosci. 2012;32:12005–12017. doi: 10.1523/JNEUROSCI.0871-12.2012.
    1. Bramham C.R., Alme M.N., Bittins M., Kuipers S.D., Nair R.R., Pai B., Panja D., Schubert M., Soule J., Tiron A., et al. The Arc of synaptic memory. Exp. Brain Res. 2010;200:125–140. doi: 10.1007/s00221-009-1959-2.
    1. Uchida S., Teubner B.J.W., Hevi C., Hara K., Kobayashi A., Dave R.M., Shintaku T., Jaikhan P., Yamagata H., Suzuki T., et al. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene. Cell Rep. 2017;18:352–366. doi: 10.1016/j.celrep.2016.12.052.
    1. Shi M., Ding J., Li L., Bai H., Li X., Lan L., Fan H., Gao L. Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc. Brain Sci. 2020;11:27. doi: 10.3390/brainsci11010027.
    1. Lv X.F., Sun L.L., Cui C.L., Han J.S. NAc Shell Arc/Arg3.1 Protein Mediates Reconsolidation of Morphine CPP by Increased GluR1 Cell Surface Expression: Activation of ERK-Coupled CREB is Required. Int. J. Neuropsychopharmacol. 2015;18:1–10. doi: 10.1093/ijnp/pyv030.
    1. Shepherd J.D., Rumbaugh G., Wu J., Chowdhury S., Plath N., Kuhl D., Huganir R.L., Worley P.F. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron. 2006;52:475–484. doi: 10.1016/j.neuron.2006.08.034.
    1. Roth R.H., Cudmore R.H., Tan H.L., Hong I., Zhang Y., Huganir R.L. Cortical Synaptic AMPA Receptor Plasticity during Motor Learning. Neuron. 2020;105:895–908.e5. doi: 10.1016/j.neuron.2019.12.005.
    1. Li Y., Pehrson A.L., Waller J.A., Dale E., Sanchez C., Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)’s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front. Neurosci. 2015;9:279. doi: 10.3389/fnins.2015.00279.

Source: PubMed

3
Předplatit