PSMA as a Theranostic Target in Hepatocellular Carcinoma: Immunohistochemistry and 68 Ga-PSMA-11 PET Using Cyclotron-Produced 68 Ga

Scott M Thompson, Garima Suman, Michael S Torbenson, Zong-Ming E Chen, Danielle E Jondal, Anurima Patra, Eric C Ehman, James C Andrews, Chad J Fleming, Brian T Welch, Anil N Kurup, Lewis R Roberts, Kymberly D Watt, Mark J Truty, Sean P Cleary, Rory L Smoot, Julie K Heimbach, Nguyen H Tran, Amit Mahipal, Jun Yin, Tyler Zemla, Chen Wang, Zachary Fogarty, Mark Jacobson, Bradley J Kemp, Sudhakar K Venkatesh, Geoffrey B Johnson, David A Woodrum, Ajit H Goenka, Scott M Thompson, Garima Suman, Michael S Torbenson, Zong-Ming E Chen, Danielle E Jondal, Anurima Patra, Eric C Ehman, James C Andrews, Chad J Fleming, Brian T Welch, Anil N Kurup, Lewis R Roberts, Kymberly D Watt, Mark J Truty, Sean P Cleary, Rory L Smoot, Julie K Heimbach, Nguyen H Tran, Amit Mahipal, Jun Yin, Tyler Zemla, Chen Wang, Zachary Fogarty, Mark Jacobson, Bradley J Kemp, Sudhakar K Venkatesh, Geoffrey B Johnson, David A Woodrum, Ajit H Goenka

Abstract

Prostate-specific membrane antigen (PSMA) is a validated target for molecular diagnostics and targeted radionuclide therapy. Our purpose was to evaluate PSMA expression in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatic adenoma (HCA); investigate the genetic pathways in HCC associated with PSMA expression; and evaluate HCC detection rate with 68 Ga-PSMA-11 positron emission tomography (PET). In phase 1, PSMA immunohistochemistry (IHC) on HCC (n = 148), CCA (n = 111), and HCA (n = 78) was scored. In a subset (n = 30), messenger RNA (mRNA) data from the Cancer Genome Atlas HCC RNA sequencing were correlated with PSMA expression. In phase 2, 68 Ga-PSMA-11 PET was prospectively performed in patients with treatment-naïve HCC on a digital PET scanner using cyclotron-produced 68 Ga. Uptake was graded qualitatively and semi-quantitatively using standard metrics. On IHC, PSMA expression was significantly higher in HCC compared with CCA and HCA (P < 0.0001); 91% of HCCs (n = 134) expressed PSMA, which principally localized to tumor-associated neovasculature. Higher tumor grade was associated with PSMA expression (P = 0.012) but there was no association with tumor size (P = 0.14), fibrosis (P = 0.35), cirrhosis (P = 0.74), hepatitis B virus (P = 0.31), or hepatitis C virus (P = 0.15). Overall survival tended to be longer in patients without versus with PSMA expression (median overall survival: 4.2 vs. 1.9 years; P = 0.273). FGF14 (fibroblast growth factor 14) mRNA expression correlated positively (rho = 0.70; P = 1.70 × 10-5 ) and MAD1L1 (Mitotic spindle assembly checkpoint protein MAD1) correlated negatively with PSMA expression (rho = -0.753; P = 1.58 × 10-6 ). Of the 190 patients who met the eligibility criteria, 31 patients with 39 HCC lesions completed PET; 64% (n = 25) lesions had pronounced 68 Ga-PSMA-11 standardized uptake value: SUVmax (median [range] 9.2 [4.9-28.4]), SUVmean 4.7 (2.4-12.7), and tumor-to-liver background ratio 2 (1.1-11). Conclusion: Ex vivo expression of PSMA in neovasculature of HCC translates to marked tumor avidity on 68 Ga-PSMA-11 PET, which suggests that PSMA has the potential as a theranostic target in patients with HCC.

© 2021 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.

Figures

FIG. 1
FIG. 1
Study overview.
FIG. 2
FIG. 2
PSMA expression in HCC. (A‐E) Tumor associated endothelial cell staining as a percentage of area: 0% (A)

FIG. 3

A 68‐year‐old male with alcohol‐associated…

FIG. 3

A 68‐year‐old male with alcohol‐associated liver disease–related cirrhosis and a LI‐RADS 5 observation.…

FIG. 3
A 68‐year‐old male with alcohol‐associated liver disease–related cirrhosis and a LI‐RADS 5 observation. Axial dynamic contrast‐enhanced MRI images show a large, infiltrative lesion in right lobe of liver, showing nonrim arterial hyperenhancement (A) and washout in equilibrium phase (B) with tumor thrombus extending into right portal vein (arrows). Axial attenuation corrected gray‐scale PET image (C), fused PET/CT image (D), and maximum‐intensity projection image (E) from 68Ga‐PSMA PET showing intense PSMA uptake (grade 4) in the lesion as well as in the tumor thrombus.

FIG. 4

A 60‐year‐old female with biopsy…

FIG. 4

A 60‐year‐old female with biopsy proven well‐differentiated HCC. Axial MRI images show a…

FIG. 4
A 60‐year‐old female with biopsy proven well‐differentiated HCC. Axial MRI images show a large exophytic lesion arising from left hepatic lobe with arterial hyperenhancement (A) and pseudocapsule (B) (arrows). Axial attenuation corrected gray‐scale PET image (C) and fused PET/MR image (D) from 68Ga‐PSMA PET show no uptake of PSMA in the lesion (grade 1).
FIG. 3
FIG. 3
A 68‐year‐old male with alcohol‐associated liver disease–related cirrhosis and a LI‐RADS 5 observation. Axial dynamic contrast‐enhanced MRI images show a large, infiltrative lesion in right lobe of liver, showing nonrim arterial hyperenhancement (A) and washout in equilibrium phase (B) with tumor thrombus extending into right portal vein (arrows). Axial attenuation corrected gray‐scale PET image (C), fused PET/CT image (D), and maximum‐intensity projection image (E) from 68Ga‐PSMA PET showing intense PSMA uptake (grade 4) in the lesion as well as in the tumor thrombus.
FIG. 4
FIG. 4
A 60‐year‐old female with biopsy proven well‐differentiated HCC. Axial MRI images show a large exophytic lesion arising from left hepatic lobe with arterial hyperenhancement (A) and pseudocapsule (B) (arrows). Axial attenuation corrected gray‐scale PET image (C) and fused PET/MR image (D) from 68Ga‐PSMA PET show no uptake of PSMA in the lesion (grade 1).

References

    1. Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al. Liver imaging reporting and data system (LI‐RADS) version 2018: imaging of hepatocellular carcinoma in at‐risk patients. Radiology 2018;289:816‐830.
    1. Bruix J, Reig M, Sherman M. Evidence‐based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016;150:835‐853.
    1. Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol 2016;65:1017‐1030.
    1. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T‐Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894‐1905.
    1. Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti‐tumour surveillance in immunotherapy‐treated HCC. Nature 2021;592:450‐456.
    1. Haber PK, Puigvehi M, Castet F, Lourdusamy V, Montal R, Tabrizian P, et al. Evidence‐based management of HCC: systematic review and meta‐analysis of randomized controlled trials (2002*2020). Gastroenterology 2021;161(Suppl 1):879‐898.
    1. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate‐specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 2018;38:200‐217.
    1. Schmidt LH, Heitkötter B, Schulze AB, Schliemann C, Steinestel K, Trautmann M, et al. Prostate specific membrane antigen (PSMA) expression in non‐small cell lung cancer. PLoS One 2017;12:e0186280.
    1. Bychkov A, Vutrapongwatana U, Tepmongkol S, Keelawat S. PSMA expression by microvasculature of thyroid tumors—potential implications for PSMA theranostics. Sci Rep 2017;7:5202.
    1. Heitkötter B, Trautmann M, Grünewald I, Bögemann M, Rahbar K, Gevensleben H, et al. Expression of PSMA in tumor neovasculature of high grade sarcomas including synovial sarcoma, rhabdomyosarcoma, undifferentiated sarcoma and MPNST. Oncotarget 2017;8:4268‐4276.
    1. Jiao D, Li YU, Yang FA, Han D, Wu J, Shi S, et al. Expression of prostate‐specific membrane antigen in tumor‐associated vasculature predicts poor prognosis in hepatocellular carcinoma. Clin Transl Gastroenterol 2019;10:1‐7.
    1. Sasikumar A, Joy A, Nanabala R, Pillai MR, Thomas B, Vikraman KR. (68)Ga‐PSMA PET/CT imaging in primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016;43:795‐796.
    1. Taneja S, Taneja R, Kashyap V, Jha A, Jena A. 68Ga‐PSMA uptake in hepatocellular carcinoma. Clin Nucl Med 2017;42:e69‐e70.
    1. Hirmas N, Leyh C, Sraieb M, Barbato F, Schaarschmidt BM, Umutlu L, et al. [(68)Ga]Ga‐PSMA‐11 PET/CT improves tumor detection and impacts management in patients with hepatocellular carcinoma (HCC). J Nucl Med 2021;62:1235‐1241.
    1. Blanc V, Riordan JD, Soleymanjahi S, Nadeau JH, Nalbantoglu I, Xie Y, et al. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest 2021;131(1).
    1. Byrt T, Bishop J, Carlin JB. Bias, prevalence and kappa. J Clin Epidemiol 1993;46:423‐429.
    1. Cancer Genome Atlas Research Network . Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017;169:1327‐1341.e1323.
    1. Kalari KR, Nair AA, Bhavsar JD, O’Brien DR, Davila JI, Bockol MA, et al. MAP‐RSeq: Mayo Analysis Pipeline for RNA sequencing. BMC Bioinformatics 2014;15:224.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545‐15550.
    1. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001;29:1165‐1188.
    1. Werner‐Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient‐based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys 2012;82:1164‐1171.
    1. Tolkach Y, Goltz D, Kremer A, Ahmadzadehfar H, Bergheim D, Essler M, et al. Prostate‐specific membrane antigen expression in hepatocellular carcinoma: potential use for prognosis and diagnostic imaging. Oncotarget 2019;10:4149‐4160.
    1. Chen L‐X, Zou S‐J, Li D, Zhou J‐Y, Cheng Z‐T, Zhao J, et al. Prostate‐specific membrane antigen expression in hepatocellular carcinoma, cholangiocarcinoma, and liver cirrhosis. World J Gastroenterol 2020;26:7664‐7678.
    1. Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH. Prostate‐specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol 2006;26:5310‐5324.
    1. Conway RE, Joiner K, Patterson A, Bourgeois D, Rampp R, Hannah BC, et al. Prostate specific membrane antigen produces pro‐angiogenic laminin peptides downstream of matrix metalloprotease‐2. Angiogenesis 2013;16:847‐860.
    1. Conway RE, Rojas C, Alt J, Nováková Z, Richardson SM, Rodrick TC, et al. Prostate‐specific membrane antigen (PSMA)‐mediated laminin proteolysis generates a pro‐angiogenic peptide. Angiogenesis 2016;19:487‐500.
    1. Grant CL, Caromile LA, Ho V, Durrani K, Rahman MM, Claffey KP, et al. Prostate specific membrane antigen (PSMA) regulates angiogenesis independently of VEGF during ocular neovascularization. PLoS One 2012;7:e41285.
    1. Sandhu DS, Baichoo E, Roberts LR. Fibroblast growth factor signaling in liver carcinogenesis. Hepatology 2014;59:1166‐1173.
    1. Coleman SJ, Grose RP, Kocher HM. Fibroblast growth factor family as a potential target in the treatment of hepatocellular carcinoma. J Hepatocell Carcinoma 2014;1:43‐54.
    1. Mcarthur GA, Laherty CD, Queva C, Hurlin PJ, Loo L, James L, et al. The Mad protein family links transcriptional repression to cell differentiation. Cold Spring Harb Symp Quant Biol 1998;63:423‐433.
    1. Sze KM, Ching YP, Jin DY, Ng IO. Role of a novel splice variant of mitotic arrest deficient 1 (MAD1), MAD1beta, in mitotic checkpoint control in liver cancer. Cancer Res 2008;68:9194‐9201.
    1. Sze KM, Chu GK, Mak QH, Lee JM, Ng IO. Proline‐rich acidic protein 1 (PRAP1) is a novel interacting partner of MAD1 and has a suppressive role in mitotic checkpoint signalling in hepatocellular carcinoma. J Pathol 2014;233:51‐60.
    1. Nam CW, Park NH, Park BR, Shin JW, Jung SW, Na YW, et al. Mitotic checkpoint gene MAD1 in hepatocellular carcinoma is associated with tumor recurrence after surgical resection. J Surg Oncol 2008;97:567‐571.
    1. Cui C, Lu Z, Yang L, Gao Y, Liu W, Gu L, et al. Genome‐wide identification of differential methylation between primary and recurrent hepatocellular carcinomas. Mol Carcinog 2016;55:1163‐1174.
    1. Liping X, Jia L, Qi C, Liang Y, Dongen L, Jianshuai J. Cell cycle genes are potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Biomed Res Int 2020;2020:6206157.
    1. Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 2020;72:215‐229.
    1. Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018;15:536‐554.
    1. Cuda TJ, Riddell AD, Liu C, Whitehall VL, Borowsky J, Wyld DK, et al. PET imaging quantifying (68)Ga‐PSMA‐11 uptake in metastatic colorectal cancer. J Nucl Med 2020;61:1576‐1579.
    1. Kuyumcu S, Has‐Simsek D, Iliaz R, Sanli Y, Buyukkaya F, Akyuz F, et al. Evidence of prostate‐specific membrane antigen expression in hepatocellular carcinoma using 68Ga‐PSMA PET/CT. Clin Nucl Med 2019;44:702‐706.
    1. Kunikowska J, Cieślak B, Gierej B, Patkowski W, Kraj L, Kotulski M, et al. [(68) Ga]Ga‐prostate‐specific membrane antigen PET/CT: a novel method for imaging patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2021;48:883‐892.
    1. Kesler M, Levine C, Hershkovitz D, Mishani E, Menachem Y, Lerman H, et al. (68)Ga‐PSMA is a novel PET‐CT tracer for imaging of hepatocellular carcinoma: a prospective pilot study. J Nucl Med 2019;60:185‐191.
    1. Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with (177)Lu‐labelled PSMA‐ligands ((177)Lu‐PSMA‐RLT). Eur J Nucl Med Mol Imaging 2019;46:2536‐2544.
    1. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [(177)Lu]‐PSMA‐617 radionuclide treatment in patients with metastatic castration‐resistant prostate cancer (LuPSMA trial): a single‐centre, single‐arm, phase 2 study. Lancet Oncol 2018;19:825‐833.
    1. Riaz A, Miller FH, Kulik LM, Nikolaidis P, Yaghmai V, Lewandowski RJ, et al. Imaging response in the primary index lesion and clinical outcomes following transarterial locoregional therapy for hepatocellular carcinoma. JAMA 2010;303:1062‐1069.
    1. Kunikowska J, Charzynska I, Kulinski R, Pawlak D, Maurin M, Krolicki L. Tumor uptake in glioblastoma multiforme after IV injection of [(177)Lu]Lu‐PSMA‐617. Eur J Nucl Med Mol Imaging 2020;47:1605‐1606.

Source: PubMed

3
Předplatit