Fractional Flow Reserve following Percutaneous Coronary Intervention

Udit Thakur, Nancy Khav, Andrea Comella, Michael Michail, Abdul R Ihdayhid, Eric Poon, Stephen J Nicholls, Brian Ko, Adam J Brown, Udit Thakur, Nancy Khav, Andrea Comella, Michael Michail, Abdul R Ihdayhid, Eric Poon, Stephen J Nicholls, Brian Ko, Adam J Brown

Abstract

Fractional flow reserve (FFR) is routinely used to determine lesion severity prior to percutaneous coronary intervention (PCI). However, there is an increasing recognition that FFR may also be useful following PCI to identify mechanisms leading to restenosis and the need for repeat revascularization. Post-PCI FFR is associated with the presence and severity of stent under-expansion and may help identify peri-stent-related complications. FFR pullback may also unmask other functionally significant lesions within the target vessel that were not appreciable on angiography. Recent studies have confirmed the prognostic utility of performing routine post-PCI FFR and suggest possible interventional targets that would improve stent durability. In this review, we detail the theoretical basis underlying post-PCI FFR, provide practical tips to facilitate measurement, and discuss the growing evidence supporting its use.

Conflict of interest statement

AJB has received consultancy fees from Abbott Vascular and Boston Scientific. ARI has received consulting fees from Boston Scientific and Canon Medical. BK has received research grants for Canon Medical and honorarium from Medtronic, St Jude Medical, and Abbott. SJN has received research support from AstraZeneca, Amgen, Anthera, CSL Behring, Cerenis, Eli Lilly, Esperion, Resverlogix, Novartis, InfraReDx, and Sanofi-Regeneron and is a consultant for Amgen, Akcea, AstraZeneca, Boehringer Ingelheim, CSL Behring, Eli Lilly, Esperion, Kowa, Merck, Takeda, Pfizer, Sanofi-Regeneron, and Novo Nordisk.

Copyright © 2020 Udit Thakur et al.

Figures

Figure 1
Figure 1
(a) Physiological flow through a well-positioned and expanded stent, facilitating re-endothelialization and inhibiting thrombus generation. (b) Poorly deployed stent leads to a region of accelerated flow and high ESS over the stenotic portion of the stent surface, which activates platelets to release vasoactive mediators including adenosine diphosphate. Adenosine phosphate along with downstream low ESS increases the local concentration of activated platelets, leading to increased stent thrombogenicity.
Figure 2
Figure 2
(a) Angiographic image of post-PCI FFR in the distal left main stem and mid-left anterior descending artery (b) Conceptual representation of post-PCI pressure measurements. FFR is calculated as a ratio of distal coronary pressure (Pd) to aortic pressure (Pa). FFR = Pd/Pa. (c) Pressure curve from post-PCI FFR measurement in the patient from part A, displaying pressure drops across the two stents. (a) and (c) are adapted from Ihdayhid et al. [30] with permission. Copyright © 2016, Elsevier.
Figure 3
Figure 3
A simple schematic approach of interpretation of post-PCI FFR.
Figure 4
Figure 4
Use of post-PCI FFR for side branch assessment and optimization. (a) Suboptimal post-PCI FFR in the ramus (side branch) following bifurcation PCI, warranting further intervention. The pressure curve from this FFR measurement can be seen on the right. (b) Following kissing balloon dilation, post-PCI FFR in the ramus is improved.
Figure 5
Figure 5
Illustration of falsely elevated FFR value in the setting of MI4a: (a) Depiction of downstream infarction due to MI4a. FFR calculation through a patient with a normal heart and no evidence of downstream flow limitation. (b) Falsely elevated FFR values may result secondary to MI4a. A falsely elevated FFR value in the setting of MI4A. MI4a limits the maximal achievable hyperemic flow and hence leads to a falsely elevated FFR value.

References

    1. Lincoff A. M., Popma J. J., Ellis S. G., Hacker J. A., Topol E. J. Abrupt vessel closure complicating coronary angioplasty: clinical, angiographic and therapeutic profile. Journal of the American College of Cardiology. 1992;19(5):926–935. doi: 10.1016/0735-1097(92)90272-o.
    1. Nogic J., Baey Y.-W., Nerlekar N., et al. Polymer-free versus permanent polymer-coated drug eluting stents for the treatment of coronary artery disease: a meta-analysis of randomized trials. Journal of Interventional Cardiology. 2018;31(5):608–616. doi: 10.1111/joic.12522.
    1. Stone G. W., Maehara A., Lansky A. J., et al. A prospective natural-history study of coronary atherosclerosis. New England Journal of Medicine. 2011;364(3):226–235. doi: 10.1056/nejmoa1002358.
    1. Meneveau N., Souteyrand G., Motreff P., et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome. Circulation. 2016;134(13):906–917. doi: 10.1161/circulationaha.116.024393.
    1. Jones D. A., Rathod K. S., Koganti S., et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention. JACC: Cardiovascular Interventions. 2018;11(14):1313–1321. doi: 10.1016/j.jcin.2018.01.274.
    1. Smilowitz N. R., Mohananey D., Razzouk L., Weisz G., Slater J. N. Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States. Catheterization and Cardiovascular Interventions. 2018;92(6):E410–E415. doi: 10.1002/ccd.27673.
    1. Li S.-J., Ge Z., Kan J., et al. Cutoff value and long-term prediction of clinical events by FFR measured immediately after implantation of a drug-eluting stent in patients with coronary artery disease. JACC: Cardiovascular Interventions. 2017;10(10):986–995. doi: 10.1016/j.jcin.2017.02.012.
    1. Agarwal S. K., Kasula S., Hacioglu Y., Ahmed Z., Uretsky B. F., Hakeem A. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes. JACC: Cardiovascular Interventions. 2016;9(10):1022–1031. doi: 10.1016/j.jcin.2016.01.046.
    1. Bech G. J. W., Pijls N. H. J., De Bruyne B., et al. Usefulness of fractional flow reserve to predict clinical outcome after balloon angioplasty. Circulation. 1999;99(7):883–888. doi: 10.1161/01.cir.99.7.883.
    1. Leesar M. A., Satran A., Yalamanchili V., Helmy T., Abdul-Waheed M., Wongpraparut N. The impact of fractional flow reserve measurement on clinical outcomes after transradial coronary stenting. EuroIntervention. 2011;7(8):917–923. doi: 10.4244/eijv7i8a145.
    1. Pijls N. H. J., Klauss V., Siebert U., et al. Coronary pressure measurement after stenting predicts adverse events at follow-up. Circulation. 2002;105(25):2950–2954. doi: 10.1161/01.cir.0000020547.92091.76.
    1. Reith S., Battermann S., Hellmich M., Marx N., Burgmaier M. Correlation between OCT-derived intrastent dimensions and fractional flow reserve measurements after coronary stent implantation and impact on clinical outcome. The Journal of Invasive Cardiology. 2015;27(5):222–228.
    1. Foin N., Gutiérrez-Chico J. L., Nakatani S., et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance. Circulation: Cardiovascular Interventions. 2014;7(2):180–189. doi: 10.1161/circinterventions.113.000931.
    1. Wolfrum M., De Maria G. L., Benenati S., et al. What are the causes of a suboptimal FFR after coronary stent deployment? Insights from a consecutive series using OCT imaging. EuroIntervention. 2018;14(12):e1324–e1331. doi: 10.4244/eij-d-18-00071.
    1. Ito T., Tani T., Fujita H., Ohte N. Relationship between fractional flow reserve and residual plaque volume and clinical outcomes after optimal drug-eluting stent implantation: insight from intravascular ultrasound volumetric analysis. International Journal of Cardiology. 2014;176(2):399–404. doi: 10.1016/j.ijcard.2014.07.115.
    1. Hanekamp C. E. E., Koolen J. J., Pijls N. H. J., Michels H. R., Bonnier H. J. R. M. Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation. 1999;99(8):1015–1021. doi: 10.1161/01.cir.99.8.1015.
    1. van Zandvoort L. J., Masdjedi K., Witberg K., et al. Explanation of postprocedural fractional flow reserve below 0.85: a comprehensive ultrasound analysis of the FFR SEARCH registry. Circulation: Cardiovascular Interventions. 2019;12 doi: 10.1161/circinterventions.118.007030.e007030
    1. Koskinas K. C., Chatzizisis Y. S., Antoniadis A. P., Giannoglou G. D. Role of endothelial shear stress in stent restenosis and thrombosis. Journal of the American College of Cardiology. 2012;59(15):1337–1349. doi: 10.1016/j.jacc.2011.10.903.
    1. Michail M., Torii R., Crake T., et al. Local hemodynamics. JACC: Cardiovascular Interventions. 2015;8(9):e149–e150. doi: 10.1016/j.jcin.2015.04.022.
    1. Papafaklis M. I., Bourantas C. V., Theodorakis P. E., Katsouras C. S., Fotiadis D. I., Michalis L. K. Relationship of shear stress with in-stent restenosis: bare metal stenting and the effect of brachytherapy. International Journal of Cardiology. 2009;134(1):25–32. doi: 10.1016/j.ijcard.2008.02.006.
    1. Thury A., Wentzel J. J., Vinke R. V. H., et al. Focal in-stent restenosis near step-up. Circulation. 2002;105(23):e185–7. doi: 10.1161/01.cir.0000018282.32332.13.
    1. Wentzel J. J., Krams R., Schuurbiers J. C. H., et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation. 2001;103(13):1740–1745. doi: 10.1161/01.cir.103.13.1740.
    1. Chatzizisis Y. S., Coskun A. U., Jonas M., Edelman E. R., Feldman C. L., Stone P. H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Journal of the American College of Cardiology. 2007;49(25):2379–2393. doi: 10.1016/j.jacc.2007.02.059.
    1. Zhu S. J., Thondapu V., Poon E. K. W., Serruys P. W., Ooi A., Barlis P. Computational particle tracking to model platelet behaviour near malapposed coronary stent struts. European Heart Journal. 2019;40(23):1890–1891. doi: 10.1093/eurheartj/ehy919.
    1. Brown A. J., Teng Z., Evans P. C., Gillard J. H., Samady H., Bennett M. R. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Reviews Cardiology. 2016;13(4):210–220. doi: 10.1038/nrcardio.2015.203.
    1. Vranckx P., Cutlip D. E., McFadden E. P., Kern M. J., Mehran R., Muller O. Coronary pressure-derived fractional flow reserve measurements. Circulation: Cardiovascular Interventions. 2012;5(2):312–317. doi: 10.1161/circinterventions.112.968511.
    1. Pyxaras S. A., Adriaenssens T., Barbato E., et al. In-stent fractional flow reserve variations and related optical coherence tomography findings: the FFR-OCT co-registration study. The International Journal of Cardiovascular Imaging. 2018;34(4):495–502. doi: 10.1007/s10554-017-1262-4.
    1. van Bommel R. J., Masdjedi K., Diletti R., et al. Routine fractional flow reserve measurement after percutaneous coronary intervention: the FFR-SEARCH study. Circulation: Cardiovascular Interventions. 2019;12 doi: 10.1161/circinterventions.118.007428.e007428
    1. Rodés-Cabau J., Gutiérrez M., Courtis J., et al. Importance of diffuse atherosclerosis in the functional evaluation of coronary stenosis in the proximal-mid segment of a coronary artery by myocardial fractional flow reserve measurements. The American Journal of Cardiology. 2011;108(4):483–490. doi: 10.1016/j.amjcard.2011.03.073.
    1. Ihdayhid A. R., Seneviratne S. K., Cameron J., Ko B. Resting indexes in the functional assessment of left main and left anterior descending coronary stenoses. JACC: Cardiovascular Interventions. 2018;11(15):1531–1533. doi: 10.1016/j.jcin.2018.05.012.
    1. Ihdayhid A. R., Yong A., Harper R., et al. A practical guide for fractional flow reserve guided revascularisation. Heart, Lung and Circulation. 2018;27(4):406–419. doi: 10.1016/j.hlc.2017.09.017.
    1. Azzalini L., Poletti E., Demir O. M., et al. Impact of post-percutaneous coronary intervention fractional flow reserve measurement on procedural management and clinical outcomes: the REPEAT-FFR study. The Journal of Invasive Cardiology. 2019;31(8):229–234.
    1. De Bruyne B., Hersbach F., Pijls N. H. J., et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation. 2001;104(20):2401–2406. doi: 10.1161/hc4501.099316.
    1. Banning A. P., Lassen J. F., Burzotta F., et al. Percutaneous coronary intervention for obstructive bifurcation lesions: the 14th consensus document from the European Bifurcation Club. EuroIntervention. 2019;15(1):90–98. doi: 10.4244/eij-d-19-00144.
    1. Ahn J.-M., Lee J.-Y., Kang S.-J., et al. Functional assessment of jailed side branches in coronary bifurcation lesions using fractional flow reserve. JACC: Cardiovascular Interventions. 2012;5(2):155–161. doi: 10.1016/j.jcin.2011.10.015.
    1. Koo B.-K., Kang H.-J., Youn T.-J., et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. Journal of the American College of Cardiology. 2005;46(4):633–637. doi: 10.1016/j.jacc.2005.04.054.
    1. Koo B.-K., Waseda K., Kang H.-J., et al. Anatomic and functional evaluation of bifurcation lesions undergoing percutaneous coronary intervention. Circulation: Cardiovascular Interventions. 2010;3(2):113–119. doi: 10.1161/circinterventions.109.887406.
    1. Leone A. M., De Caterina A. R., Basile E., et al. Influence of the amount of myocardium subtended by a stenosis on fractional flow reserve. Circulation: Cardiovascular Interventions. 2013;6(1):29–36. doi: 10.1161/circinterventions.112.971101.
    1. Michail M., Dehbi H. M., Nerlekar N., et al. Application of the DILEMMA score to improve lesion selection for invasive physiological assessment. Catheterization and Cardiovascular Interventions. 2019;94(3):E96–E106. doi: 10.1002/ccd.28054.
    1. Chen S.-L., Ye F., Zhang J.-J., et al. Randomized comparison of FFR-guided and angiography-guided provisional stenting of true coronary bifurcation lesions. JACC: Cardiovascular Interventions. 2015;8(4):536–546. doi: 10.1016/j.jcin.2014.12.221.
    1. Koo B.-K., Park K.-W., Kang H.-J., et al. Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. European Heart Journal. 2008;29(6):726–732. doi: 10.1093/eurheartj/ehn045.
    1. Ratcliffe J., Huang Y., Kwan T. A novel technique in the use of fractional flow reserve in coronary artery bifurcation lesions. International Journal of Angiology. 2012;21(1):059–062. doi: 10.1055/s-0032-1306419.
    1. Baranauskas A., Peace A., Kibarskis A., et al. FFR result post PCI is suboptimal in long diffuse coronary artery disease. EuroIntervention. 2016;12(12):1473–1480. doi: 10.4244/eij-d-15-00514.
    1. Gomez-Lara J., Brugaletta S., Ortega-Paz L., et al. Long-term coronary functional assessment of the infarct-related artery treated with everolimus-eluting bioresorbable scaffolds or everolimus-eluting metallic stents. JACC: Cardiovascular Interventions. 2018;11(16):1559–1571. doi: 10.1016/j.jcin.2018.04.026.
    1. Pendyala L. K., Yin X., Li J., Chen J. P., Chronos N., Hou D. The first-generation drug-eluting stents and coronary endothelial dysfunction. JACC: Cardiovascular Interventions. 2009;2(12):1169–1177. doi: 10.1016/j.jcin.2009.10.004.
    1. Layland J., Carrick D., McEntegart M., et al. Vasodilatory capacity of the coronary microcirculation is preserved in selected patients with non-ST-segment-elevation myocardial infarction. Circulation: Cardiovascular Interventions. 2013;6(3):231–236. doi: 10.1161/circinterventions.112.000180.
    1. Cuculi F., De Maria G. L., Meier P., et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. Journal of the American College of Cardiology. 2014;64(18):1894–1904. doi: 10.1016/j.jacc.2014.07.987.
    1. Tamita K., Akasaka T., Takagi T., et al. Effects of microvascular dysfunction on myocardial fractional flow reserve after percutaneous coronary intervention in patients with acute myocardial infarction. Catheterization and Cardiovascular Interventions. 2002;57(4):452–459. doi: 10.1002/ccd.10350.
    1. Herrmann J., Haude M., Lerman A., et al. Abnormal coronary flow velocity reserve after coronary intervention is associated with cardiac marker elevation. Circulation. 2001;103(19):2339–2345. doi: 10.1161/01.cir.103.19.2339.
    1. Verhoeff B.-J., Siebes M., Meuwissen M., et al. Influence of percutaneous coronary intervention on coronary microvascular resistance index. Circulation. 2005;111(1):76–82. doi: 10.1161/01.cir.0000151610.98409.2f.
    1. Hoole S. P., Heck P. M., Epstein A. C., Clarke S. C., West N. E. J., Dutka D. P. Elective coronary stenting increases fractional flow reserve in other arteries due to an increase in microvascular resistance: clinical implications for assessment of multivessel disease. Journal of Interventional Cardiology. 2010;23(6):520–527. doi: 10.1111/j.1540-8183.2010.00597.x.
    1. Ihdayhid A. R., Koh J.-S., Ramzy J., et al. The role of fractional flow reserve and instantaneous wave-free ratio measurements in patients with acute coronary syndrome. Current Cardiology Reports. 2019;21:p. 159. doi: 10.1007/s11886-019-1233-6.
    1. Klauss V., Erdin P., Rieber J., et al. Fractional flow reserve for the prediction of cardiac events after coronary stent implantation: results of a multivariate analysis. Heart. 2005;91(2):203–206. doi: 10.1136/hrt.2003.027797.
    1. Nam C.-W., Hur S.-H., Cho Y.-K., et al. Relation of fractional flow reserve after drug-eluting stent implantation to one-year outcomes. The American Journal of Cardiology. 2011;107(12):1763–1767. doi: 10.1016/j.amjcard.2011.02.329.
    1. Doh J. H., Nam C. W., Koo B. K., et al. Clinical relevance of poststent fractional flow reserve after drug-eluting stent implantation. The Journal of Invasive Cardiology. 2015;27(8):346–351.
    1. Piroth Z., Toth G. G., Tonino P. A., et al. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circulation: Cardiovascular Interventions. 2017;10 doi: 10.1161/circinterventions.116.005233.e005233
    1. Lee J. M., Hwang D., Choi K. H., et al. Prognostic implications of relative increase and final fractional flow reserve in patients with stent implantation. JACC: Cardiovascular Interventions. 2018;11(20):2099–2109. doi: 10.1016/j.jcin.2018.07.031.
    1. Hwang D., Lee J. M., Lee H.-J., et al. Influence of target vessel on prognostic relevance of fractional flow reserve after coronary stenting. EuroIntervention. 2019;15(5):457–464. doi: 10.4244/eij-d-18-00913.
    1. Hakeem A., Ghosh B., Shah K., et al. Incremental prognostic value of post-intervention Pd/Pa in patients undergoing ischemia-driven percutaneous coronary intervention. JACC: Cardiovascular Interventions. 2019;12(20):2002–2014. doi: 10.1016/j.jcin.2019.07.026.
    1. Fournier S., Ciccarelli G., Toth G. G., et al. Association of improvement in fractional flow reserve with outcomes, including symptomatic relief, after percutaneous coronary intervention. JAMA Cardiology. 2019;4(4):370–374. doi: 10.1001/jamacardio.2019.0175.
    1. Nerlekar N., Cheshire C. J., Verma K. P., et al. Intravascular ultrasound guidance improves clinical outcomes during implantation of both first-and second-generation drug-eluting stents: a meta-analysis. EuroIntervention. 2017;12(13):1632–1642. doi: 10.4244/eij-d-16-00769.
    1. Prati F., Di Vito L., Biondi-Zoccai G., et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8(7):823–829. doi: 10.4244/eijv8i7a125.
    1. Burzotta F., Leone A. M., Aurigemma C., et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis. JACC: Cardiovascular Interventions. 2020;13(1):49–58. doi: 10.1016/j.jcin.2019.09.034.
    1. Leone A. M., Burzotta F., Aurigemma C., et al. Prospective randomized comparison of fractional flow reserve versus optical coherence tomography to guide revascularization of intermediate coronary stenoses: one‐month results. Journal of the American Heart Association. 2019;8 doi: 10.1161/jaha.119.012772.e012772

Source: PubMed

3
Předplatit