Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke?

Nicolas Hugues, Christophe Pellegrino, Claudio Rivera, Eric Berton, Caroline Pin-Barre, Jérôme Laurin, Nicolas Hugues, Christophe Pellegrino, Claudio Rivera, Eric Berton, Caroline Pin-Barre, Jérôme Laurin

Abstract

Stroke-induced cognitive impairments affect the long-term quality of life. High-intensity interval training (HIIT) is now considered a promising strategy to enhance cognitive functions. This review is designed to examine the role of HIIT in promoting neuroplasticity processes and/or cognitive functions after stroke. The various methodological limitations related to the clinical relevance of studies on the exercise recommendations in individuals with stroke are first discussed. Then, the relevance of HIIT in improving neurotrophic factors expression, neurogenesis and synaptic plasticity is debated in both stroke and healthy individuals (humans and rodents). Moreover, HIIT may have a preventive role on stroke severity, as found in rodents. The potential role of HIIT in stroke rehabilitation is reinforced by findings showing its powerful neurogenic effect that might potentiate cognitive benefits induced by cognitive tasks. In addition, the clinical role of neuroplasticity observed in each hemisphere needs to be clarified by coupling more frequently to cellular/molecular measurements and behavioral testing.

Keywords: angiogenesis; cerebral ischemia; cognition; endurance exercise; neurogenesis; neurotrophic factors; rat and human model; stroke rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the influence of high-intensity interval training (HIIT) on neuroplasticity and learning/memory performance in healthy humans and individuals with stroke. HIIT enhances circulating biomarker expression of neuroplasticity processes in individuals with stroke. The HIIT effects on cognitive functions remain to be defined despite some authors finding benefits in cognitive performance in healthy individuals.
Figure 2
Figure 2
Overview of the influence of high-intensity interval training (HIIT) and cognitive training on neuroplasticity and learning/memory performance in rodents with cerebral ischemia. HIIT enhances neurotrophin expression, neurogenesis and synaptic plasticity. However, the effects on cognition remain unclear but seem to be very modest. It is unknown if the combination between HIIT and cognitive training (enriched environment) can increase benefits of an enriched environment on cognitive functions. Grey arrows mean effects of each type of training on cognitive functions (in the beige circle at the bottom). “?” means that it remains unknown (no evidence).

References

    1. Kyu H.H., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1859–1922. doi: 10.1016/S0140-6736(18)32335-3.
    1. Marzolini S., Oh P., McIlroy W., Brooks D. The Feasibility of Cardiopulmonary Exercise Testing for Prescribing Exercise to People After. Stroke. 2012;43:1075–1081. doi: 10.1161/STROKEAHA.111.635128.
    1. Patel M.D., Coshall C., Rudd A.G., Wolfe C.D.A. Cognitive Impairment after Stroke: Clinical Determinants and Its Associations with Long-Term Stroke Outcomes. J. Am. Geriatr. Soc. 2002;50:700–706. doi: 10.1046/j.1532-5415.2002.50165.x.
    1. Mokashi S.P., Vivekanand S. Relationship between cognitive deficits and the ability to perform the activities of daily living in stroke patients. Indian J. Occup. Ther. 2005;37:3–9.
    1. Kauranen T., Turunen K., Laari S., Mustanoja S., Baumann P., Poutiainen E. The Severity of Cognitive Deficits Predicts Return to Work after a First-Ever Ischaemic Stroke. J. Neurol. Neurosurg. Psychiatry. 2013;84:316–321. doi: 10.1136/jnnp-2012-302629.
    1. Hoffmann T., Bennett S., Koh C.-L., McKenna K.T. Occupational Therapy for Cognitive Impairment in Stroke Patients. Cochrane Database Syst. Rev. 2010 doi: 10.1002/14651858.CD006430.pub2.
    1. Zheng G., Zhou W., Xia R., Tao J., Chen L. Aerobic Exercises for Cognition Rehabilitation Following Stroke: A Systematic Review. J. Stroke Cerebrovasc. Dis. 2016;25:2780–2789. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.035.
    1. Winstein C.J., Stein J., Arena R., Bates B., Cherney L.R., Cramer S.C., Deruyter F., Eng J.J., Fisher B., Harvey R.L., et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2016;47 doi: 10.1161/STR.0000000000000098.
    1. Gillespie D.C., Bowen A., Chung C.S., Cockburn J., Knapp P., Pollock A. Rehabilitation for Post-Stroke Cognitive Impairment: An Overview of Recommendations Arising from Systematic Reviews of Current Evidence. Clin. Rehabil. 2015;29:120–128. doi: 10.1177/0269215514538982.
    1. Schulz C.H., Godwin K.M., Hersch G.I., Hyde L.K., Irabor J.J., Ostwald S.K. Return to Work Predictors of Stroke Survivors and Their Spousal Caregivers. Work. 2017;57:111–124. doi: 10.3233/WOR-172544.
    1. El-Tamawy M.S.S., Abd-Allah F., Ahmed S.M., Darwish M.H., Khalifa H.A. Aerobic Exercises Enhance Cognitive Functions and Brain Derived Neurotrophic Factor in Ischemic Stroke Patients. NeuroRehabilitation. 2014:209–213. doi: 10.3233/NRE-131020.
    1. Oberlin L.E., Waiwood A.M., Cumming T.B., Marsland A.L., Bernhardt J., Erickson K.I. Effects of Physical Activity on Post-Stroke Cognitive Function: A Meta-Analysis of Randomized Controlled Trials. Stroke. 2018;17:3093–3100.
    1. Quaney B.M., Boyd L.A., McDowd J.M., Zahner L.H., He J., Mayo M.S., Macko R.F. Aerobic Exercise Improves Cognition and Motor Function Poststroke. Neurorehabil. Neural Repair. 2009;23:879–885. doi: 10.1177/1545968309338193.
    1. Song M.-K., Kim E.-J., Kim J.-K., Lee S.-G. Effects of Exercise Timing and Intensity on Neuroplasticity in a Rat Model of Cerebral Infarction. Brain Res. Bull. 2020;160:50–55. doi: 10.1016/j.brainresbull.2020.04.002.
    1. Hong M., Kim M., Kim T.-W., Park S.-S., Kim M.-K., Park Y.H., Sung Y.-H., Shin M.-S. Treadmill Exercise Improves Motor Function and Short-Term Memory by Enhancing Synaptic Plasticity and Neurogenesis in Photothrombotic Stroke Mice. Int. Neurourol. J. 2020;24:S28–S38. doi: 10.5213/inj.2040158.079.
    1. Ploughman M., Austin M.W., Glynn L., Corbett D. The Effects of Poststroke Aerobic Exercise on Neuroplasticity: A Systematic Review of Animal and Clinical Studies. Transl. Stroke Res. 2015;6:13–28. doi: 10.1007/s12975-014-0357-7.
    1. Himi N., Takahashi H., Okabe N., Nakamura E., Shiromoto T., Narita K., Koga T., Miyamoto O. Exercise in the Early Stage after Stroke Enhances Hippocampal Brain-Derived Neurotrophic Factor Expression and Memory Function Recovery. J. Stroke Cerebrovasc. Dis. 2016;25:2987–2994. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.017.
    1. Constans A., Pin-barre C., Temprado J.-J., Decherchi P., Laurin J. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke. Front. Aging Neurosci. 2016;8:164. doi: 10.3389/fnagi.2016.00164.
    1. Cumming T.B., Tyedin K., Churilov L., Morris M.E., Bernhardt J. The Effect of Physical Activity on Cognitive Function after Stroke: A Systematic Review. Int. Psychogeriatr. 2012;24:557–567. doi: 10.1017/S1041610211001980.
    1. Hicks R.R., Boggs A., Leider D., Kraemer P., Brown R., Scheff S.W., Seroogy K.B. Effects of Exercise Following Lateral Fluid Percussion Brain Injury in Rats. Restor. Neurol. Neurosci. 1998;12:41–47.
    1. Ludyga S., Gerber M., Pühse U., Looser V.N., Kamijo K. Systematic Review and Meta-Analysis Investigating Moderators of Long-Term Effects of Exercise on Cognition in Healthy Individuals. Nat. Hum. Behav. 2020;4:603–612. doi: 10.1038/s41562-020-0851-8.
    1. Mankhong S., Kim S., Moon S., Lee K.-H., Jeon H.-E., Hwang B.-H., Beak J.-W., Joa K.-L., Kang J.-H. Effects of Aerobic Exercise on Tau and Related Proteins in Rats with the Middle Cerebral Artery Occlusion. Int. J. Mol. Sci. 2020;21:5842. doi: 10.3390/ijms21165842.
    1. Tang A., Eng J., Krassioukov A., Tsang T., Liu-Ambrose T. High- and Low-Intensity Exercise Do Not Improve Cognitive Function after Stroke: A Randomized Controlled Trial. J. Rehabil. Med. 2016;48:841–846. doi: 10.2340/16501977-2163.
    1. Boyne P., Meyrose C., Westover J., Whitesel D., Hatter K., Reisman D.S., Carl D., Khoury J.C., Gerson M., Kissela B., et al. Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabil. Neural Repair. 2020;34:222–234. doi: 10.1177/1545968319899915.
    1. Calverley T.A., Ogoh S., Marley C.J., Steggall M., Marchi N., Brassard P., Lucas S.J.E., Cotter J.D., Roig M., Ainslie P.N., et al. HIITing the Brain with Exercise; Mechanisms, Consequences and Practical Recommendations. J. Physiol. 2020;598:2513–2530. doi: 10.1113/JP275021.
    1. Crozier J., Roig M., Eng J.J., MacKay-Lyons M., Fung J., Ploughman M., Bailey D.M., Sweet S.N., Giacomantonio N., Thiel A., et al. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity. Neurorehabil. Neural Repair. 2018;32:543–556. doi: 10.1177/1545968318766663.
    1. Khattab S., Eng J., Liu-Ambrose T., Richardson J., MacDermid J., Tang A. Sex Differences in the Effects of Exercise on Cognition Post-Stroke: Secondary Analysis of a Randomized Controlled Trial. J. Rehabil. Med. 2020;52:1–8. doi: 10.2340/16501977-2615.
    1. Wen D., Utesch T., Wu J., Robertson S., Liu J., Hu G., Chen H. Effects of Different Protocols of High Intensity Interval Training for VO2max Improvements in Adults: A Meta-Analysis of Randomised Controlled Trials. J. Sci. Med. Sport. 2019;22:941–947. doi: 10.1016/j.jsams.2019.01.013.
    1. Buchheit M., Laursen P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013;43:313–338. doi: 10.1007/s40279-013-0029-x.
    1. Buchheit M., Laursen P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications. Sports Med. 2013;43:927–954. doi: 10.1007/s40279-013-0066-5.
    1. Laursen P.B., Jenkins D.G. The Scientific Basis for High-Intensity Interval Training: Optimising Training Programmes and Maximising Performance in Highly Trained Endurance Athletes. Sports Med. Auckl. NZ. 2002;32:53–73. doi: 10.2165/00007256-200232010-00003.
    1. Askim T., Dahl A.E., Aamot I.L., Hokstad A., Helbostad J., Indredavik B. High-Intensity Aerobic Interval Training for Patients 3-9 Months After Stroke. A Feasibility Study: Aerobic Interval Training After Stroke. Physiother. Res. Int. 2014;19:129–139. doi: 10.1002/pri.1573.
    1. Boyne P., Dunning K., Carl D., Gerson M., Khoury J., Rockwell B., Keeton G., Westover J., Williams A., McCarthy M., et al. High-Intensity Interval Training and Moderate-Intensity Continuous Training in Ambulatory Chronic Stroke: A Feasibility Study. Phys. Ther. 2016 doi: 10.2522/ptj.20150277.
    1. Carl D.L., Boyne P., Rockwell B., Gerson M., Khoury J., Kissela B., Dunning K. Preliminary Safety Analysis of High-Intensity Interval Training (HIIT) in Persons with Chronic Stroke. Appl. Physiol. Nutr. Metab. 2017;42:311–318. doi: 10.1139/apnm-2016-0369.
    1. Hsu C.-C., Fu T.-C., Huang S.-C., Chen C.P.-C., Wang J.-S. Increased Serum Brain-Derived Neurotrophic Factor with High-Intensity Interval Training in Stroke Patients: A Randomized Controlled Trial. Ann. Phys. Rehabil. Med. 2020:S1877065720300889. doi: 10.1016/j.rehab.2020.03.010.
    1. Olney N., Wertz T., LaPorta Z., Mora A., Serbas J., Astorino T.A. Comparison of Acute Physiological and Psychological Responses Between Moderate-Intensity Continuous Exercise and Three Regimes of High-Intensity Interval Training. J. Strength Cond. Res. 2018;32:2130–2138. doi: 10.1519/JSC.0000000000002154.
    1. Luo L., Li C., Deng Y., Wang Y., Meng P., Wang Q. High-Intensity Interval Training on Neuroplasticity, Balance between Brain-Derived Neurotrophic Factor and Precursor Brain-Derived Neurotrophic Factor in Poststroke Depression Rats. J. Stroke Cerebrovasc. Dis. 2018;28:672–682. doi: 10.1016/j.jstrokecerebrovasdis.2018.11.009.
    1. Pin-Barre C., Constans A., Brisswalter J., Pellegrino C., Laurin J. Effects of High- Versus Moderate-Intensity Training on Neuroplasticity and Functional Recovery After Focal Ischemia. Stroke. 2017;48:2855–2864. doi: 10.1161/STROKEAHA.117.017962.
    1. Pin-Barre C., Hugues N., Constans A., Berton E., Pellegrino C., Laurin J. Effects of Different High-Intensity Interval Training Regimens on Endurance and Neuroplasticity After Cerebral Ischemia. Stroke. 2021;52:1109–1114. doi: 10.1161/STROKEAHA.120.031873.
    1. Liu Y.-F., Chen H., Wu C.-L., Kuo Y.-M., Yu L., Huang A.-M., Wu F.-S., Chuang J.-I., Jen C.J. Differential Effects of Treadmill Running and Wheel Running on Spatial or Aversive Learning and Memory: Roles of Amygdalar Brain-Derived Neurotrophic Factor and Synaptotagmin I: Treadmill Running and Wheel Running Affect Aversive Memory Differently. J. Physiol. 2009;587:3221–3231. doi: 10.1113/jphysiol.2009.173088.
    1. Yang Y.-R., Wang R.-Y., Wang P.S.-G. Early and Late Treadmill Training after Focal Brain Ischemia in Rats. Neurosci. Lett. 2003;339:91–94. doi: 10.1016/S0304-3940(03)00010-7.
    1. Billinger S.A., Boyne P., Coughenour E., Dunning K., Mattlage A. Does Aerobic Exercise and the FITT Principle Fit into Stroke Recovery? Curr. Neurol. Neurosci. Rep. 2015;15:519. doi: 10.1007/s11910-014-0519-8.
    1. Song M.-K., Kim E.-J., Kim J.-K., Park H.-K., Lee S.-G. Effect of Regular Swimming Exercise to Duration-Intensity on Neurocognitive Function in Cerebral Infarction Rat Model. Neurol. Res. 2019;41:37–44. doi: 10.1080/01616412.2018.1524087.
    1. Gronwald T., de Bem Alves A.C., Murillo-Rodríguez E., Latini A., Schuette J., Budde H. Standardization of Exercise Intensity and Consideration of a Dose–Response Is Essential. Commentary on “Exercise-Linked FNDC5/Irisin Rescues Synaptic Plasticity and Memory Defects in Alzheimer’s Models”, by Lourenco et al., Published 2019 in Nature Medicine. J. Sport Health Sci. 2019;8:353–354. doi: 10.1016/j.jshs.2019.03.006.
    1. Constans A., Pin-Barre C., Molinari F., Temprado J.-J., Brioche T., Pellegrino C., Laurin J. High-Intensity Interval Training Is Superior to Moderate Intensity Training on Aerobic Capacity in Rats: Impact on Hippocampal Plasticity Markers. Behav. Brain Res. 2021;398:112977. doi: 10.1016/j.bbr.2020.112977.
    1. Rist P.M., Lee I.-M., Kase C.S., Gaziano J.M., Kurth T. Physical Activity and Functional Outcomes From Cerebral Vascular Events in Men. Stroke. 2011;42:3352–3356. doi: 10.1161/STROKEAHA.111.619544.
    1. Lee I.-M., Hennekens C.H., Berger K., Buring J.E., Manson J.E. Exercise and Risk of Stroke in Male Physicians. Stroke. 1999;30:1–6. doi: 10.1161/01.STR.30.1.1.
    1. de Araujo G.G., Gobatto C.A., Marcos-Pereira M., Dos Reis I.G.M., Verlengia R. Interval versus Continuous Training with Identical Workload: Physiological and Aerobic Capacity Adaptations. Physiol. Res. 2015;64:209–219. doi: 10.33549/physiolres.932693.
    1. Fabre C., Masse-Biron J., Ahmaidi S., Adam B., Prefaut C. Effectiveness of Individualized Aerobic Training at the Ventilatory Threshold in the Elderly. J. Gerontol. A. Biol. Sci. Med. Sci. 1997;52A:B260–B266. doi: 10.1093/gerona/52A.5.B260.
    1. Choe M.-A., An G.J., Lee Y.-K., Im J.H., Choi-Kwon S., Heitkemper M. Effect of Early Low-Intensity Exercise on Rat Hind-Limb Muscles Following Acute Ischemic Stroke. Biol. Res. Nurs. 2006;7:163–174. doi: 10.1177/1099800405283566.
    1. Shih P.-C., Yang Y.-R., Wang R.-Y. Effects of Exercise Intensity on Spatial Memory Performance and Hippocampal Synaptic Plasticity in Transient Brain Ischemic Rats. PLoS ONE. 2013;8:e78163. doi: 10.1371/journal.pone.0078163.
    1. Shimada H., Hamakawa M., Ishida A., Tamakoshi K., Nakashima H., Ishida K. Low-Speed Treadmill Running Exercise Improves Memory Function after Transient Middle Cerebral Artery Occlusion in Rats. Behav. Brain Res. 2013;243:21–27. doi: 10.1016/j.bbr.2012.12.018.
    1. Faude O., Kindermann W., Meyer T. Lactate Threshold Concepts: How Valid Are They? Sports Med. Auckl. NZ. 2009;39:469–490. doi: 10.2165/00007256-200939060-00003.
    1. MacInnis M.J., Gibala M.J. Physiological Adaptations to Interval Training and the Role of Exercise Intensity: Training Adaptations and the Nature of the Stimulus. J. Physiol. 2017;595:2915–2930. doi: 10.1113/JP273196.
    1. Billinger S.A., Arena R., Bernhardt J., Eng J.J., Franklin B.A., Johnson C.M., MacKay-Lyons M., Macko R.F., Mead G.E., Roth E.J., et al. Physical Activity and Exercise Recommendations for Stroke Survivors: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2014;45:2532–2553. doi: 10.1161/STR.0000000000000022.
    1. Risedal A., Zeng J., Johansson B.B. Early Training May Exacerbate Brain Damage after Focal Brain Ischemia in the Rat. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 1999;19:997–1003. doi: 10.1097/00004647-199909000-00007.
    1. DeBow S.B., McKenna J.E., Kolb B., Colbourne F. Immediate Constraint-Induced Movement Therapy Causes Local Hyperthermia That Exacerbates Cerebral Cortical Injury in Rats. Can. J. Physiol. Pharmacol. 2004;82:231–237. doi: 10.1139/y04-013.
    1. Marzolini S., Robertson A.D., Oh P., Goodman J.M., Corbett D., Du X., MacIntosh B.J. Aerobic Training and Mobilization Early Post-Stroke: Cautions and Considerations. Front. Neurol. 2019;10:1187. doi: 10.3389/fneur.2019.01187.
    1. Lau K.W.K., Mak M.K.Y. Speed-Dependent Treadmill Training Is Effective to Improve Gait and Balance Performance in Patients with Sub-Acute Stroke. J. Rehabil. Med. 2011;43:709–713. doi: 10.2340/16501977-0838.
    1. Bernhardt J. Efficacy and Safety of Very Early Mobilisation within 24 h of Stroke Onset (AVERT): A Randomised Controlled Trial. Lancet. 2015;386:46–55. doi: 10.1016/S0140-6736(15)60690-0.
    1. Schmidt A., Wellmann J., Schilling M., Strecker J.-K., Sommer C., Schabitz W.-R., Diederich K., Minnerup J. Meta-Analysis of the Efficacy of Different Training Strategies in Animal Models of Ischemic Stroke. Stroke. 2014;45:239–247. doi: 10.1161/STROKEAHA.113.002048.
    1. Hill T., Polk J.D. BDNF, Endurance Activity, and Mechanisms Underlying the Evolution of Hominin Brains. Am. J. Phys. Anthropol. 2019;168:47–62. doi: 10.1002/ajpa.23762.
    1. Lommatzsch M., Zingler D., Schuhbaeck K., Schloetcke K., Zingler C., Schuff-Werner P., Virchow J.C. The Impact of Age, Weight and Gender on BDNF Levels in Human Platelets and Plasma. Neurobiol. Aging. 2005;26:115–123. doi: 10.1016/j.neurobiolaging.2004.03.002.
    1. Banoujaafar H., Monnier A., Pernet N., Quirié A., Garnier P., Prigent-Tessier A., Marie C. Brain BDNF Levels Are Dependent on Cerebrovascular Endothelium-Derived Nitric Oxide. Eur. J. Neurosci. 2016;44:2226–2235. doi: 10.1111/ejn.13301.
    1. Nakahashi T., Fujimura H., Altar C.A., Li J., Kambayashi J., Tandon N.N., Sun B. Vascular Endothelial Cells Synthesize and Secrete Brain-Derived Neurotrophic Factor. FEBS Lett. 2000;470:113–117. doi: 10.1016/S0014-5793(00)01302-8.
    1. Kerschensteiner M., Gallmeier E., Behrens L., Leal V.V., Misgeld T., Klinkert W.E.F., Kolbeck R., Hoppe E., Oropeza-Wekerle R.-L., Bartke I., et al. Activated Human T Cells, B Cells, and Monocytes Produce Brain-Derived Neurotrophic Factor In Vitro and in Inflammatory Brain Lesions: A Neuroprotective Role of Inflammation? J. Exp. Med. 1999;189:865–870. doi: 10.1084/jem.189.5.865.
    1. Liu P.Z., Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front. Neurosci. 2018;12:52. doi: 10.3389/fnins.2018.00052.
    1. Rasmussen P., Brassard P., Adser H., Pedersen M.V., Leick L., Hart E., Secher N.H., Pedersen B.K., Pilegaard H. Evidence for a Release of Brain-Derived Neurotrophic Factor from the Brain during Exercise: Brain-Derived Neurotrophic Factor Release during Exercise. Exp. Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512.
    1. Béjot Y., Mossiat C., Giroud M., Prigent-Tessier A., Marie C. Circulating and Brain BDNF Levels in Stroke Rats. Relevance to Clinical Studies. PLoS ONE. 2011;6:e29405. doi: 10.1371/journal.pone.0029405.
    1. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., Kim J.S., Heo S., Alves H., White S.M., et al. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
    1. So J.H., Huang C., Ge M., Cai G., Zhang L., Lu Y., Mu Y. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination. Front. Cell. Neurosci. 2017;11:13. doi: 10.3389/fncel.2017.00013.
    1. Voss M.W., Vivar C., Kramer A.F., van Praag H. Bridging Animal and Human Models of Exercise-Induced Brain Plasticity. Trends Cogn. Sci. 2013;17:525–544. doi: 10.1016/j.tics.2013.08.001.
    1. Vital T.M., Stein A.M., de Melo Coelho F.G., Arantes F.J., Teodorov E., Santos-Galduróz R.F. Physical Exercise and Vascular Endothelial Growth Factor (VEGF) in Elderly: A Systematic Review. Arch. Gerontol. Geriatr. 2014;59:234–239. doi: 10.1016/j.archger.2014.04.011.
    1. Yoo Y.K., Lee J., Kim J., Kim G., Kim S., Kim J., Chun H., Lee J.H., Lee C.J., Hwang K.S. Ultra-Sensitive Detection of Brain-Derived Neurotrophic Factor (BDNF) in the Brain of Freely Moving Mice Using an Interdigitated Microelectrode (IME) Biosensor. Sci. Rep. 2016;6:33694. doi: 10.1038/srep33694.
    1. Tisdall M.M., Smith M. Cerebral Microdialysis: Research Technique or Clinical Tool. Br. J. Anaesth. 2006;97:18–25. doi: 10.1093/bja/ael109.
    1. Pedersen B.K. Muscle as a Secretory Organ. In: Terjung R., editor. Comprehensive Physiology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. p. c120033.
    1. Boyne P., Meyrose C., Westover J., Whitesel D., Hatter K., Reisman D.S., Cunningham D., Carl D., Jansen C., Khoury J.C., et al. Exercise Intensity Affects Acute Neurotrophic and Neurophysiological Responses Poststroke. J. Appl. Physiol. 2019;126:431–443. doi: 10.1152/japplphysiol.00594.2018.
    1. Coco M., Alagona G., Rapisarda G., Costanzo E., Calogero R.A., Perciavalle V., Perciavalle V. Elevated Blood Lactate Is Associated with Increased Motor Cortex Excitability. Somatosens. Mot. Res. 2010;27:1–8. doi: 10.3109/08990220903471765.
    1. Ferris L.T., Williams J.S., Shen C.-L. The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function. Med. Sci. Sports Exerc. 2007;39:728–734. doi: 10.1249/mss.0b013e31802f04c7.
    1. Taubert M., Villringer A., Lehmann N. Endurance Exercise as an “Endogenous” Neuro-Enhancement Strategy to Facilitate Motor Learning. Front. Hum. Neurosci. 2015;9:692. doi: 10.3389/fnhum.2015.00692.
    1. El Hayek L., Khalifeh M., Zibara V., Abi Assaad R., Emmanuel N., Karnib N., El-Ghandour R., Nasrallah P., Bilen M., Ibrahim P., et al. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF) J. Neurosci. 2019;39:2369–2382. doi: 10.1523/JNEUROSCI.1661-18.2019.
    1. Zoladz J.A., Pilc A. The Effect of Physical Activity on the Brain Derived Neurotrophic Factor: From Animal to Human Studies. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2010;61:533–541.
    1. Lisman J., Cooper K., Sehgal M., Silva A.J. Memory Formation Depends on Both Synapse-Specific Modifications of Synaptic Strength and Cell-Specific Increases in Excitability. Nat. Neurosci. 2018;21:309–314. doi: 10.1038/s41593-018-0076-6.
    1. Morland C., Andersson K.A., Haugen Ø.P., Hadzic A., Kleppa L., Gille A., Rinholm J.E., Palibrk V., Diget E.H., Kennedy L.H., et al. Exercise Induces Cerebral VEGF and Angiogenesis via the Lactate Receptor HCAR1. Nat. Commun. 2017;8:15557. doi: 10.1038/ncomms15557.
    1. Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., Alberini C.M. Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation. Cell. 2011;144:810–823. doi: 10.1016/j.cell.2011.02.018.
    1. Schiffer T., Schulte S., Sperlich B., Achtzehn S., Fricke H., Strüder H.K. Lactate Infusion at Rest Increases BDNF Blood Concentration in Humans. Neurosci. Lett. 2011;488:234–237. doi: 10.1016/j.neulet.2010.11.035.
    1. Eaton M., Granata C., Barry J., Safdar A., Bishop D., Little J.P. Impact of a Single Bout of High-Intensity Interval Exercise and Short-Term Interval Training on Interleukin-6, FNDC5, and METRNL MRNA Expression in Human Skeletal Muscle. J. Sport Health Sci. 2018;7:191–196. doi: 10.1016/j.jshs.2017.01.003.
    1. Boström P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C., Rasbach K.A., Boström E.A., Choi J.H., Long J.Z., et al. A PGC1-α-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature. 2012;481:463–468. doi: 10.1038/nature10777.
    1. Wrann C.D., White J.P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., Lin J.D., Greenberg M.E., Spiegelman B.M. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 2013;18:649–659. doi: 10.1016/j.cmet.2013.09.008.
    1. Choi S.H., Bylykbashi E., Chatila Z.K., Lee S.W., Pulli B., Clemenson G.D., Kim E., Rompala A., Oram M.K., Asselin C., et al. Combined Adult Neurogenesis and BDNF Mimic Exercise Effects on Cognition in an Alzheimer’s Mouse Model. Science. 2018;361:eaan8821. doi: 10.1126/science.aan8821.
    1. Pin-Barre C., Pellegrino C., Laurin F., Laurin J. Cerebral Ischemia Changed the Effect of Metabosensitive Muscle Afferents on Somatic Reflex Without Affecting Thalamic Activity. Front. Physiol. 2018;9:638. doi: 10.3389/fphys.2018.00638.
    1. Pin-Barre C., Laurin J., Felix M.-S., Pertici V., Kober F., Marqueste T., Matarazzo V., Muscatelli-Bossy F., Temprado J.-J., Brisswalter J., et al. Acute Neuromuscular Adaptation at the Spinal Level Following Middle Cerebral Artery Occlusion-Reperfusion in the Rat. PLoS ONE. 2014;9:e89953. doi: 10.1371/journal.pone.0089953.
    1. Jones T.A., Adkins D.L. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology. 2015;30:358–370. doi: 10.1152/physiol.00014.2015.
    1. Tennant K.A. Thinking Outside the Brain: Structural Plasticity in the Spinal Cord Promotes Recovery from Cortical Stroke. Exp. Neurol. 2014;254:195–199. doi: 10.1016/j.expneurol.2014.02.003.
    1. Joisten N., Proschinger S., Rademacher A., Schenk A., Bloch W., Warnke C., Gonzenbach R., Kool J., Bansi J., Zimmer P. High-Intensity Interval Training Reduces Neutrophil-to-Lymphocyte Ratio in Persons with Multiple Sclerosis during Inpatient Rehabilitation. Mult. Scler. J. 2020:135245852095138. doi: 10.1177/1352458520951382.
    1. Molteni R., Ying Z., Gómez-Pinilla F. Differential Effects of Acute and Chronic Exercise on Plasticity-Related Genes in the Rat Hippocampus Revealed by Microarray. Eur. J. Neurosci. 2002;16:1107–1116. doi: 10.1046/j.1460-9568.2002.02158.x.
    1. Zafra F., Castren E., Thoenen H., Lindholm D. Interplay between Glutamate and Gamma-Aminobutyric Acid Transmitter Systems in the Physiological Regulation of Brain-Derived Neurotrophic Factor and Nerve Growth Factor Synthesis in Hippocampal Neurons. Proc. Natl. Acad. Sci. USA. 1991;88:10037–10041. doi: 10.1073/pnas.88.22.10037.
    1. Saucedo Marquez C.M., Vanaudenaerde B., Troosters T., Wenderoth N. High-Intensity Interval Training Evokes Larger Serum BDNF Levels Compared with Intense Continuous Exercise. J. Appl. Physiol. Bethesda Md 1985. 2015;119:1363–1373. doi: 10.1152/japplphysiol.00126.2015.
    1. Song J., Zhong C., Bonaguidi M.A., Sun G.J., Hsu D., Gu Y., Meletis K., Huang Z.J., Ge S., Enikolopov G., et al. Neuronal Circuitry Mechanism Regulating Adult Quiescent Neural Stem-Cell Fate Decision. Nature. 2012;489:150–154. doi: 10.1038/nature11306.
    1. Stavrinos E.L., Coxon J.P. High-Intensity Interval Exercise Promotes Motor Cortex Disinhibition and Early Motor Skill Consolidation. J. Cogn. Neurosci. 2017;29:593–604. doi: 10.1162/jocn_a_01078.
    1. Blaesse P., Airaksinen M.S., Rivera C., Kaila K. Cation-Chloride Cotransporters and Neuronal Function. Neuron. 2009;61:820–838. doi: 10.1016/j.neuron.2009.03.003.
    1. Goubert E., Altvater M., Rovira M.-N., Khalilov I., Mazzarino M., Sebastiani A., Schaefer M.K.E., Rivera C., Pellegrino C. Bumetanide Prevents Brain Trauma-Induced Depressive-Like Behavior. Front. Mol. Neurosci. 2019;12:12. doi: 10.3389/fnmol.2019.00012.
    1. Jaenisch N., Witte O.W., Frahm C. Downregulation of Potassium Chloride Cotransporter KCC2 After Transient Focal Cerebral Ischemia. Stroke. 2010;41:e151–e159. doi: 10.1161/STROKEAHA.109.570424.
    1. Lee-Hotta S., Uchiyama Y., Kametaka S. Role of the BDNF-TrkB Pathway in KCC2 Regulation and Rehabilitation Following Neuronal Injury: A Mini Review. Neurochem. Int. 2019;128:32–38. doi: 10.1016/j.neuint.2019.04.003.
    1. Rivera C., Li H., Thomas-Crusells J., Lahtinen H., Viitanen T., Nanobashvili A., Kokaia Z., Airaksinen M.S., Voipio J., Kaila K., et al. BDNF-Induced TrkB Activation down-Regulates the K+–Cl− Cotransporter KCC2 and Impairs Neuronal Cl− Extrusion. J. Cell Biol. 2002;159:747–752. doi: 10.1083/jcb.200209011.
    1. Pozzi D., Rasile M., Corradini I., Matteoli M. Environmental Regulation of the Chloride Transporter KCC2: Switching Inflammation off to Switch the GABA On? Transl. Psychiatry. 2020;10:349. doi: 10.1038/s41398-020-01027-6.
    1. Thomas A.G., Dennis A., Bandettini P.A., Johansen-Berg H. The Effects of Aerobic Activity on Brain Structure. Front. Psychol. 2012;3:86. doi: 10.3389/fpsyg.2012.00086.
    1. Hillman C.H., Erickson K.I., Kramer A.F. Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition. Nat. Rev. Neurosci. 2008;9:58–65. doi: 10.1038/nrn2298.
    1. Angevaren M., Verhaar H., Aufdemkampe G., Aleman A., Arens K., Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people. Cochrane Database Syst. Rev. 2005:CD005381.
    1. Tottori N., Morita N., Ueta K., Fujita S. Effects of High Intensity Interval Training on Executive Function in Children Aged 8–12 Years. Int. J. Environ. Res. Public. Health. 2019;16:4127. doi: 10.3390/ijerph16214127.
    1. Winter B., Breitenstein C., Mooren F.C., Voelker K., Fobker M., Lechtermann A., Krueger K., Fromme A., Korsukewitz C., Floel A., et al. High Impact Running Improves Learning. Neurobiol. Learn. Mem. 2007;87:597–609. doi: 10.1016/j.nlm.2006.11.003.
    1. Kujach S., Olek R.A., Byun K., Suwabe K., Sitek E.J., Ziemann E., Laskowski R., Soya H. Acute Sprint Interval Exercise Increases Both Cognitive Functions and Peripheral Neurotrophic Factors in Humans: The Possible Involvement of Lactate. Front. Neurosci. 2020;13:1455. doi: 10.3389/fnins.2019.01455.
    1. Skriver K., Roig M., Lundbye-Jensen J., Pingel J., Helge J.W., Kiens B., Nielsen J.B. Acute Exercise Improves Motor Memory: Exploring Potential Biomarkers. Neurobiol. Learn. Mem. 2014;116:46–58. doi: 10.1016/j.nlm.2014.08.004.
    1. Roig M., Skriver K., Lundbye-Jensen J., Kiens B., Nielsen J.B. A Single Bout of Exercise Improves Motor Memory. PLoS ONE. 2012;7:e44594. doi: 10.1371/journal.pone.0044594.
    1. Mang C.S., Snow N.J., Campbell K.L., Ross C.J.D., Boyd L.A. A Single Bout of High-Intensity Aerobic Exercise Facilitates Response to Paired Associative Stimulation and Promotes Sequence-Specific Implicit Motor Learning. J. Appl. Physiol. 2014;117:1325–1336. doi: 10.1152/japplphysiol.00498.2014.
    1. Thomas R., Johnsen L.K., Geertsen S.S., Christiansen L., Ritz C., Roig M., Lundbye-Jensen J. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity. PLoS ONE. 2016;11:e0159589. doi: 10.1371/journal.pone.0159589.
    1. Pyke W., Ifram F., Coventry L., Sung Y., Champion I., Javadi A.-H. The Effects of Different Protocols of Physical Exercise and Rest on Long-Term Memory. Neurobiol. Learn. Mem. 2020;167:107128. doi: 10.1016/j.nlm.2019.107128.
    1. Chang Y.K., Labban J.D., Gapin J.I., Etnier J.L. The Effects of Acute Exercise on Cognitive Performance: A Meta-Analysis. Brain Res. 2012;1453:87–101. doi: 10.1016/j.brainres.2012.02.068.
    1. Afzalpour M.E., Chadorneshin H.T., Foadoddini M., Eivari H.A. Comparing Interval and Continuous Exercise Training Regimens on Neurotrophic Factors in Rat Brain. Physiol. Behav. 2015;147:78–83. doi: 10.1016/j.physbeh.2015.04.012.
    1. E L., Burns J.M., Swerdlow R.H. Effect of High-Intensity Exercise on Aged Mouse Brain Mitochondria, Neurogenesis, and Inflammation. Neurobiol. Aging. 2014;35:2574–2583. doi: 10.1016/j.neurobiolaging.2014.05.033.
    1. dos Santos J.R., Bortolanza M., Ferrari G.D., Lanfredi G.P., do Nascimento G.C., Azzolini A.E.C.S., Del Bel E., de Campos A.C., Faça V.M., Vulczak A., et al. One-Week High-Intensity Interval Training Increases Hippocampal Plasticity and Mitochondrial Content without Changes in Redox State. Antioxidants. 2020;9:445. doi: 10.3390/antiox9050445.
    1. Pereira A.C., Huddleston D.E., Brickman A.M., Sosunov A.A., Hen R., McKhann G.M., Sloan R., Gage F.H., Brown T.R., Small S.A. An in Vivo Correlate of Exercise-Induced Neurogenesis in the Adult Dentate Gyrus. Proc. Natl. Acad. Sci. USA. 2007;104:5638–5643. doi: 10.1073/pnas.0611721104.
    1. Melo C.S., Rocha-Vieira E., Freitas D.A., Soares B.A., Rocha-Gomes A., Riul T.R., Mendonça V.A., Lacerda A.C.R., Camargos A.C.R., Carvalho L.E.D., et al. A Single Session of High-Intensity Interval Exercise Increases Antioxidants Defenses in the Hippocampus of Wistar Rats. Physiol. Behav. 2019;211:112675. doi: 10.1016/j.physbeh.2019.112675.
    1. Freitas D.A., Rocha-Vieira E., Soares B.A., Nonato L.F., Fonseca S.R., Martins J.B., Mendonça V.A., Lacerda A.C., Massensini A.R., Poortamns J.R., et al. High Intensity Interval Training Modulates Hippocampal Oxidative Stress, BDNF and Inflammatory Mediators in Rats. Physiol. Behav. 2018;184:6–11. doi: 10.1016/j.physbeh.2017.10.027.
    1. Freitas D.A., Rocha-Vieira E., De Sousa R.A.L., Soares B.A., Rocha-Gomes A., Chaves Garcia B.C., Cassilhas R.C., Mendonça V.A., Camargos A.C.R., De Gregorio J.A.M., et al. High-Intensity Interval Training Improves Cerebellar Antioxidant Capacity without Affecting Cognitive Functions in Rats. Behav. Brain Res. 2019;376:112181. doi: 10.1016/j.bbr.2019.112181.
    1. Zoladz J.A., Pilc A., Majerczak J., Grandys M., Zapart-Bukowska J., Duda K. Endurance Training Increases Plasma Brain-Derived Neurotrophic Factor Concentration in Young Healthy Men. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008;59(Suppl. S7):119–132.
    1. Nokia M.S., Lensu S., Ahtiainen J.P., Johansson P.P., Koch L.G., Britton S.L., Kainulainen H. Physical Exercise Increases Adult Hippocampal Neurogenesis in Male Rats Provided It Is Aerobic and Sustained: Aerobic Exercise Promotes Adult Neurogenesis. J. Physiol. 2016;594:1855–1873. doi: 10.1113/JP271552.
    1. Kozareva D.A., Cryan J.F., Nolan Y.M. Born This Way: Hippocampal Neurogenesis across the Lifespan. Aging Cell. 2019;18:e13007. doi: 10.1111/acel.13007.
    1. Schaaf M.J.M., de Jong J., de Kloet E.R., Vreugdenhil E. Downregulation of BDNF MRNA and Protein in the Rat Hippocampus by Corticosterone. Brain Res. 1998;813:112–120. doi: 10.1016/S0006-8993(98)01010-5.
    1. Sale M.V., Ridding M.C., Nordstrom M.A. Cortisol Inhibits Neuroplasticity Induction in Human Motor Cortex. J. Neurosci. 2008;28:8285–8293. doi: 10.1523/JNEUROSCI.1963-08.2008.
    1. Lu B., Pang P.T., Woo N.H. The Yin and Yang of Neurotrophin Action. Nat. Rev. Neurosci. 2005;6:603. doi: 10.1038/nrn1726.
    1. Lee R. Regulation of Cell Survival by Secreted Proneurotrophins. Science. 2001;294:1945–1948. doi: 10.1126/science.1065057.
    1. Li C., Xu X., Wang Z., Wang Y., Luo L., Cheng J., Chen S.-F., Liu H., Wan Q., Wang Q. Exercise Ameliorates Post-Stroke Depression by Inhibiting PTEN Elevation-Mediated Upregulation of TLR4/NF-ΚB/NLRP3 Signaling in Mice. Brain Res. 2020;1736:146777. doi: 10.1016/j.brainres.2020.146777.
    1. Biernaskie J., Szymanska A., Windle V., Corbett D. Bi-Hemispheric Contribution to Functional Motor Recovery of the Affected Forelimb Following Focal Ischemic Brain Injury in Rats. Eur. J. Neurosci. 2005;21:989–999. doi: 10.1111/j.1460-9568.2005.03899.x.
    1. Bo W., Lei M., Tao S., Jie L.T., Qian L., Lin F.Q., Ping W.X. Effects of Combined Intervention of Physical Exercise and Cognitive Training on Cognitive Function in Stroke Survivors with Vascular Cognitive Impairment: A Randomized Controlled Trial. Clin. Rehabil. 2019;33:54–63. doi: 10.1177/0269215518791007.
    1. Boyne P., Scholl V., Doren S., Carl D., Billinger S.A., Reisman D.S., Gerson M., Kissela B., Vannest J., Dunning K. Locomotor Training Intensity after Stroke: Effects of Interval Type and Mode. Top. Stroke Rehabil. 2020;27:483–493. doi: 10.1080/10749357.2020.1728953.
    1. Eather N., Riley N., Miller A., Smith V., Poole A., Vincze L., Morgan P.J., Lubans D.R. Efficacy and Feasibility of HIIT Training for University Students: The Uni-HIIT RCT. J. Sci. Med. Sport. 2019;22:596–601. doi: 10.1016/j.jsams.2018.11.016.
    1. Kobilo T., Liu Q.-R., Gandhi K., Mughal M., Shaham Y., van Praag H. Running Is the Neurogenic and Neurotrophic Stimulus in Environmental Enrichment. Learn. Mem. 2011;18:605–609. doi: 10.1101/lm.2283011.
    1. Ploughman M., Eskes G.A., Kelly L.P., Kirkland M.C., Devasahayam A.J., Wallack E.M., Abraha B., Hasan S.M.M., Downer M.B., Keeler L., et al. Synergistic Benefits of Combined Aerobic and Cognitive Training on Fluid Intelligence and the Role of IGF-1 in Chronic Stroke. Neurorehabil. Neural Repair. 2019;33:199–212. doi: 10.1177/1545968319832605.
    1. Heisz J.J., Clark I.B., Bonin K., Paolucci E.M., Michalski B., Becker S., Fahnestock M. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors. J. Cogn. Neurosci. 2017;29:1895–1907. doi: 10.1162/jocn_a_01164.
    1. Nepveu J.-F., Thiel A., Tang A., Fung J., Lundbye-Jensen J., Boyd L.A., Roig M. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabil. Neural Repair. 2017;31:726–735. doi: 10.1177/1545968317718269.
    1. Lin K., Huang Y., Hsieh Y., Wu C. Potential Predictors of Motor and Functional Outcomes After Distributed Constraint-Induced Therapy for Patients With Stroke. Neurorehabil. Neural Repair. 2009;23:336–342. doi: 10.1177/1545968308321773.
    1. Madhavan S., Cleland B.T., Sivaramakrishnan A., Freels S., Lim H., Testai F.D., Corcos D.M. Cortical Priming Strategies for Gait Training after Stroke: A Controlled, Stratified Trial. J. NeuroEngineering Rehabil. 2020;17:111. doi: 10.1186/s12984-020-00744-9.
    1. Madhavan S., Stinear J.W., Kanekar N. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability Following Stroke: Implications for Therapy. Neural Plast. 2016;2016:1–8. doi: 10.1155/2016/1686414.
    1. Stinear C.M., Barber P.A., Coxon J.P., Fleming M.K., Byblow W.D. Priming the Motor System Enhances the Effects of Upper Limb Therapy in Chronic Stroke. Brain. 2008;131:1381–1390. doi: 10.1093/brain/awn051.
    1. Yen C.-L., Wang R.-Y., Liao K.-K., Huang C.-C., Yang Y.-R. Gait Training—Induced Change in Corticomotor Excitability in Patients With Chronic Stroke. Neurorehabil. Neural Repair. 2008;22:22–30. doi: 10.1177/1545968307301875.
    1. Gould E., Beylin A., Tanapat P., Reeves A., Shors T.J. Learning Enhances Adult Neurogenesis in the Hippocampal Formation. Nat. Neurosci. 1999;2:260–265. doi: 10.1038/6365.
    1. Curlik D.M., Shors T.J. Training Your Brain: Do Mental and Physical (MAP) Training Enhance Cognition through the Process of Neurogenesis in the Hippocampus? Neuropharmacology. 2013;64:506–514. doi: 10.1016/j.neuropharm.2012.07.027.
    1. Sakalem M.E., Seidenbecher T., Zhang M., Saffari R., Kravchenko M., Wördemann S., Diederich K., Schwamborn J.C., Zhang W., Ambrée O. Environmental Enrichment and Physical Exercise Revert Behavioral and Electrophysiological Impairments Caused by Reduced Adult Neurogenesis: REDUCTION OF ADULT NEUROGENESIS AND ENVIRONMENTAL ENRICHMENT. Hippocampus. 2017;27:36–51. doi: 10.1002/hipo.22669.
    1. Zhang F., Wu Y., Jia J. Exercise Preconditioning and Brain Ischemic Tolerance. Neuroscience. 2011;177:170–176. doi: 10.1016/j.neuroscience.2011.01.018.
    1. Rezaei R., Nasoohi S., Haghparast A., Khodagholi F., Bigdeli M.R., Nourshahi M. High Intensity Exercise Preconditioning Provides Differential Protection against Brain Injury Following Experimental Stroke. Life Sci. 2018;207:30–35. doi: 10.1016/j.lfs.2018.03.007.
    1. Hafez S., Khan M.B., Awad M.E., Wagner J.D., Hess D.C. Short-Term Acute Exercise Preconditioning Reduces Neurovascular Injury After Stroke Through Induced ENOS Activation. Transl. Stroke Res. 2020;11:851–860. doi: 10.1007/s12975-019-00767-y.
    1. Abbasian S., Asghar Ravasi A. The Effect of Antecedent-Conditioning High-Intensity Interval Training on BDNF Regulation through PGC-1α Pathway Following Cerebral Ischemia. Brain Res. 2020;1729:146618. doi: 10.1016/j.brainres.2019.146618.
    1. Liebelt B., Papapetrou P., Ali A., Guo M., Ji X., Peng C., Rogers R., Curry A., Jimenez D., Ding Y. Exercise Preconditioning Reduces Neuronal Apoptosis in Stroke by Up-Regulating Heat Shock Protein-70 (Heat Shock Protein-72) and Extracellular-Signal-Regulated-Kinase 1/2. Neuroscience. 2010;166:1091–1100. doi: 10.1016/j.neuroscience.2009.12.067.
    1. Dahlgren K., Gibas K.J. Ketogenic Diet, High Intensity Interval Training (HIIT) and Memory Training in the Treatment of Mild Cognitive Impairment: A Case Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2018;12:819–822. doi: 10.1016/j.dsx.2018.04.031.
    1. Korman N., Armour M., Chapman J., Rosenbaum S., Kisely S., Suetani S., Firth J., Siskind D. High Intensity Interval Training (HIIT) for People with Severe Mental Illness: A Systematic Review & Meta-Analysis of Intervention Studies– Considering Diverse Approaches for Mental and Physical Recovery. Psychiatry Res. 2020;284:112601. doi: 10.1016/j.psychres.2019.112601.
    1. Viana R.B., Gentil P., Naves J.P.A., Rebelo A.C.S., Santos D.A.T., Braga M.A.O., de Lira C.A.B. Interval Training Improves Depressive Symptoms But Not Anxious Symptoms in Healthy Women. Front. Psychiatry. 2019;10:661. doi: 10.3389/fpsyt.2019.00661.
    1. Li B., Liang F., Ding X., Yan Q., Zhao Y., Zhang X., Bai Y., Huang T., Xu B. Interval and Continuous Exercise Overcome Memory Deficits Related to β-Amyloid Accumulation through Modulating Mitochondrial Dynamics. Behav. Brain Res. 2019;376:112171. doi: 10.1016/j.bbr.2019.112171.
    1. Koyuncuoğlu T., Sevim H., Çetrez N., Meral Z., Gönenç B., Kuntsal Dertsiz E., Akakın D., Yüksel M., Kasımay Çakır Ö. High Intensity Interval Training Protects from Post Traumatic Stress Disorder Induced Cognitive Impairment. Behav. Brain Res. 2021;397:112923. doi: 10.1016/j.bbr.2020.112923.
    1. Fernandes B., Barbieri F.A., Arthuso F.Z., Silva F.A., Moretto G.F., Imaizumi L.F.I., Ngomane A.Y., Guimarães G.V., Ciolac E.G. High-Intensity Interval Versus Moderate-Intensity Continuous Training in Individuals With Parkinson’s Disease: Hemodynamic and Functional Adaptation. J. Phys. Act. Health. 2020;17:85–91. doi: 10.1123/jpah.2018-0588.
    1. Harvey M., Weston K.L., Gray W.K., O’Callaghan A., Oates L.L., Davidson R., Walker R.W. High-Intensity Interval Training in People with Parkinson’s Disease: A Randomized, Controlled Feasibility Trial. Clin. Rehabil. 2019;33:428–438. doi: 10.1177/0269215518815221.
    1. O’Callaghan A., Harvey M., Houghton D., Gray W.K., Weston K.L., Oates L.L., Romano B., Walker R.W. Comparing the Influence of Exercise Intensity on Brain-Derived Neurotrophic Factor Serum Levels in People with Parkinson’s Disease: A Pilot Study. Aging Clin. Exp. Res. 2020;32:1731–1738. doi: 10.1007/s40520-019-01353-w.

Source: PubMed

3
Předplatit