Gut microbiota develop towards an adult profile in a sex-specific manner during puberty

Katri Korpela, Sampo Kallio, Anne Salonen, Matti Hero, Anna Kaarina Kukkonen, Päivi J Miettinen, Erkki Savilahti, Ella Kohva, Laura Kariola, Maria Suutela, Annika Tarkkanen, Willem M de Vos, Taneli Raivio, Mikael Kuitunen, Katri Korpela, Sampo Kallio, Anne Salonen, Matti Hero, Anna Kaarina Kukkonen, Päivi J Miettinen, Erkki Savilahti, Ella Kohva, Laura Kariola, Maria Suutela, Annika Tarkkanen, Willem M de Vos, Taneli Raivio, Mikael Kuitunen

Abstract

Accumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006-Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT00298337 . The adult-comparison cohort (HELMi) is NCT03996304.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
(a) Microbiota similarity to that in adults in relation to pubertal timing (time to/from peak growth velocity) in girls. (b) Microbiota similarity to that in adults in relation to pubertal timing (time to/from peak growth velocity) in boys.
Figure 2
Figure 2
(a) Principal coordinates analysis of gut microbiota composition in girls compared with adults of the same sex. (b) Principal coordinates analysis of gut microbiota composition in boys compared with adults of the same sex.
Figure 3
Figure 3
(a) Abundance of Clostridiales in relation to pubertal timing (time to/from peak growth velocity) in girls. (b) Abundance of Bacteroidales in relation to pubertal timing (time to/from peak growth velocity) in girls. (c) Bacteroidales/Clostridiales ratio in relation to pubertal timing (time to/from peak growth velocity) in girls. (d) Abundance of Clostridiales in relation to pubertal timing (time to/from peak growth velocity) in boys. (e) Abundance of Bacteroidales in relation to pubertal timing (time to/from peak growth velocity) in boys. (f) Bacteroidales/Clostridiales ratio in relation to pubertal timing (time to/from peak growth velocity) in boys.
Figure 4
Figure 4
(a) Association between exposure to cephalosporin and pubertal timing (time to/from peak growth velocity) in girls. (b) Association between exposure to cephalosporin and pubertal timing (time to/from peak growth velocity) in boys. (c) Association between exposure to macrolide, and pubertal timing (time to/from peak growth velocity) in girls. (d) Association between exposure to macrolide, and pubertal timing (time to/from peak growth velocity) in boys.
Figure 5
Figure 5
(a) Multivariate model for pubertal timing in girls. (b) Multivariate model for pubertal timing in boys.

References

    1. Day FR, et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017;49(6):6. doi: 10.1038/ng.3841.
    1. Ullah R, Raza A, Rauf N, Shen Y, Zhou Y-D, Fu J. Postnatal feeding with a fat rich diet induces precocious puberty independent of body weight, body fat, and leptin levels in female mice. Front. Endocrinol. 2019;10:758. doi: 10.3389/fendo.2019.00758.
    1. Kapczuk K. Elite athletes and pubertal delay. Minerva Pediatr. 2017;69(5):415–426. doi: 10.23736/S0026-4946.17.05044-7.
    1. Aksglaede L, Juul A, Olsen LW, Sørensen TIA. Age at puberty and the emerging obesity epidemic. PLoS ONE. 2009;4(12):e8450. doi: 10.1371/journal.pone.0008450.
    1. Deng X, Li W, Luo Y, Liu S, Wen Y, Liu Q. Association between small fetuses and puberty timing: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 2017;14(11):1. doi: 10.3390/ijerph14111377.
    1. Li XF, et al. Role of the posterodorsal medial amygdala in predator odour stress-induced puberty delay in female rats. J. Neuroendocrinol. 2019;31(6):1. doi: 10.1111/jne.12719.
    1. Kao KT, Denker M, Zacharin M, Wong SC. Pubertal abnormalities in adolescents with chronic disease. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33(3):101275. doi: 10.1016/j.beem.2019.04.009.
    1. Yan J, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. PNAS. 2016;113(47):E7554–E7563. doi: 10.1073/pnas.1607235113.
    1. Korpela K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu. Rev. Food Sci. Technol. 2018;9:65–84. doi: 10.1146/annurev-food-030117-012830.
    1. Blanton LV, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351(6275):1. doi: 10.1126/science.aad3311.
    1. Korpela K, et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5(1):26. doi: 10.1186/s40168-017-0245-y.
    1. Angelakis E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 2017;106:162–170. doi: 10.1016/j.micpath.2016.11.002.
    1. Ervin SM, et al. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 2019;294(49):18586–18599. doi: 10.1074/jbc.RA119.010950.
    1. Flores R, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 2012;10:253. doi: 10.1186/1479-5876-10-253.
    1. Fuhrman BJ, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014;99(12):4632–4640. doi: 10.1210/jc.2014-2222.
    1. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53. doi: 10.1016/j.maturitas.2017.06.025.
    1. Salonen A, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8(11):2218–2230. doi: 10.1038/ismej.2014.63.
    1. Goldin BR, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74(3 Suppl):1125–1131. doi: 10.1002/1097-0142(19940801)74:3+<1125::aid-cncr2820741521>;2-5.
    1. Rose DP, Goldman M, Connolly JM, Strong LE. High-fiber diet reduces serum estrogen concentrations in premenopausal women. Am. J. Clin. Nutr. 1991;54(3):520–525. doi: 10.1093/ajcn/54.3.520.
    1. Org E, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7(4):313–322. doi: 10.1080/19490976.2016.1203502.
    1. Yurkovetskiy L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–412. doi: 10.1016/j.immuni.2013.08.013.
    1. Markle JGM, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–1088. doi: 10.1126/science.1233521.
    1. Guo Y, et al. Association between polycystic ovary syndrome and gut microbiota. PLoS ONE. 2016;11(4):e0153196. doi: 10.1371/journal.pone.0153196.
    1. Dong G, et al. The association of gut microbiota with idiopathic central precocious puberty in girls. Front. Endocrinol. 2019;10:1. doi: 10.3389/fendo.2019.00941.
    1. Yuan X, Chen R, Zhang Y, Lin X, Yang X. Sexual dimorphism of gut microbiota at different pubertal status. Microb. Cell Fact. 2020;19(1):152. doi: 10.1186/s12934-020-01412-2.
    1. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol. Ecol. 2011;77(2):404–412. doi: 10.1111/j.1574-6941.2011.01120.x.
    1. Ringel-Kulka T, et al. Intestinal microbiota in healthy US young children and adults: a high throughput microarray analysis. PLoS ONE. 2013;8(5):64315. doi: 10.1371/journal.pone.0064315.
    1. Hollister EB, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3(1):36. doi: 10.1186/s40168-015-0101-x.
    1. Del Chierico F, et al. Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns. Front. Microbiol. 2018;9:1210. doi: 10.3389/fmicb.2018.01210.
    1. Kukkonen K, et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2007;119(1):192–198. doi: 10.1016/j.jaci.2006.09.009.
    1. Kuitunen M, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 2009;123(2):335–341. doi: 10.1016/j.jaci.2008.11.019.
    1. Kallio S, Kukkonen AK, Savilahti E, Kuitunen M. Perinatal probiotic intervention prevented allergic disease in a Caesarean-delivered subgroup at 13-year follow-up. Clin. Exp. Allergy. 2019;49(4):506–515. doi: 10.1111/cea.13321.
    1. Korpela K, Dikareva E, Hanski E, Kolho K-L, de Vos WM, Salonen A. Cohort profile: Finnish Health and Early Life Microbiota (HELMi) longitudinal birth cohort. BMJ Open. 2019;9(6):e028500. doi: 10.1136/bmjopen-2018-028500.
    1. Rikken B, Wit JM. Prepubertal height velocity references over a wide age range. Arch. Dis. Child. 1992;67(10):1277–1280. doi: 10.1136/adc.67.10.1277.
    1. Salonen A, et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods. 2010;81(2):127–134. doi: 10.1016/j.mimet.2010.02.007.
    1. Korpela K, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6:1. doi: 10.1186/s40168-018-0567-4.
    1. Korpela, Katri, mare: Microbiota Analysis in R Easily. R package version 1.0. 2016. [Online]. Available:
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219.
    1. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. [Online]. Available:
    1. Jari Oksanen et al., vegan: Community Ecology Package. R package version 2.5-4. 2019. [Online]. Available:
    1. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team, _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-137. 2018. [Online]. Available:
    1. Venables, W. N., & Ripley, B. D., Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0 (2002).
    1. Wickham, H., ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. [Online]. Available:
    1. Microsoft Powerpoint for Mac. 2020. [Online]. Available:
    1. Stark CM, Susi A, Emerick J, Nylund CM. Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut. 2019;68(1):62–69. doi: 10.1136/gutjnl-2017-314971.
    1. Block JP, et al. Early antibiotic exposure and weight outcomes in young children. Pediatrics. 2018;142(6):1. doi: 10.1542/peds.2018-0290.
    1. Chen L-K, et al. Trajectory of body mass index from ages 2 to 7 years and age at peak height velocity in boys and girls. J. Pediatr. 2020 doi: 10.1016/j.jpeds.2020.11.047.
    1. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr. Opin. Microbiol. 2018;44:70–78. doi: 10.1016/j.mib.2018.06.003.
    1. Zhong H, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7(1):2. doi: 10.1186/s40168-018-0608-z.
    1. Yuan X, Chen R, Zhang Y, Lin X, Yang X. Gut microbiota: effect of pubertal status. BMC Microbiol. 2020;20:1. doi: 10.1186/s12866-020-02021-0.
    1. Santos-Marcos JA, et al. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53. doi: 10.1016/j.maturitas.2018.07.008.
    1. Liu R, et al. Dysbiosis of Gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front. Microbiol. 2017;8:1. doi: 10.3389/fmicb.2017.00324.

Source: PubMed

3
Předplatit