Analyses of the peripheral immunome following multiple administrations of avelumab, a human IgG1 anti-PD-L1 monoclonal antibody

Renee N Donahue, Lauren M Lepone, Italia Grenga, Caroline Jochems, Massimo Fantini, Ravi A Madan, Christopher R Heery, James L Gulley, Jeffrey Schlom, Renee N Donahue, Lauren M Lepone, Italia Grenga, Caroline Jochems, Massimo Fantini, Ravi A Madan, Christopher R Heery, James L Gulley, Jeffrey Schlom

Abstract

Background: Multiple anti-PD-L1/PD-1 checkpoint monoclonal antibodies (MAb) have shown clear evidence of clinical benefit. All except one have been designed or engineered to omit the possibility to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) as a second potential mode of anti-tumor activity; the reason for this is the concern of lysis of PD-L1 positive immune cells. Avelumab is a fully human IgG1 MAb which has been shown in prior in vitro studies to mediate ADCC versus a range of human tumor cells, and clinical studies have demonstrated anti-tumor activity versus a range of human cancers. This study was designed to investigate the effect on immune cell subsets in the peripheral blood of cancer patients prior to and following multiple administrations of avelumab.

Methods: One hundred twenty-three distinct immune cell subsets in the peripheral blood of cancer patients (n = 28) in a phase I trial were analyzed by flow cytometry prior to and following one, three, and nine cycles of avelumab. Changes in soluble (s) CD27 and sCD40L in plasma were also evaluated. In vitro studies were also performed to determine if avelumab would mediate ADCC of PBMC.

Results: No statistically significant changes in any of the 123 immune cell subsets analyzed were observed at any dose level, or number of doses, of avelumab. Increases in the ratio of sCD27:sCD40L were observed, suggesting potential immune activation. Controlled in vitro studies also showed lysis of tumor cells by avelumab versus no lysis of PBMC from five donors.

Conclusions: These studies demonstrate the lack of any significant effect on multiple immune cell subsets, even those expressing PD-L1, following multiple cycles of avelumab. These results complement prior studies showing anti-tumor effects of avelumab and comparable levels of adverse events with avelumab versus other anti-PD-1/PD-L1 MAbs. These studies provide the rationale to further exploit the potential ADCC mechanism of action of avelumab as well as other human IgG1 checkpoint inhibitors.

Trial registration: ClinicalTrials.gov identifier: NCT01772004 (first received: 1/14/13; start date: January 2013) and NCT00001846 (first received date: 11/3/99; start date: August 1999).

Keywords: ADCC; Anti-PD-L1; Antibody-dependent cell-mediated cytotoxicity; Avelumab; Checkpoint inhibitor; Immune subsets; Immunotherapy; Peripheral immunome.

Figures

Fig. 1
Fig. 1
Gating strategy to identity 123 peripheral immune cell subsets. Five immune flow cytometry panels using PBMC from a cancer patient following nine cycles of avelumab were used. Classic immune cell types included CD4+ T cells, CD8+ T cells, Tregs, B cells, natural killer (NK) and NK-T cells (panel a), and conventional dendritic cells (cDCs), plasmacytoid DCs (pDCs) and myeloid derived suppressor cells (MDSCs) (panel b)
Fig. 2
Fig. 2
Baseline (pre-treatment) expression of PD-L1 as a percentage of parental classic subset. a Representative flow cytometry plots of PD-L1 expression in CD4+ T cells, B cells, cDC, and MDSC. b In 28 patients prior to avelumab therapy, expression of PD-L1 was measured by flow cytometry for nine classic subsets as a percentage of total PBMC, with graphs displaying median and interquartile range
Fig. 3
Fig. 3
Baseline (pre-treatment) expression of PD-L1 as a percentage of total PBMC. In 28 patients prior to avelumab therapy, expression of PD-L1 was measured by flow cytometry for nine classic subsets as a percentage of total PBMC, with graphs displaying median and interquartile range
Fig. 4
Fig. 4
Immune cell subsets of a potentially biologic relevance following different doses of avelumab. Graphs display frequency as a percentage of PBMC for patients treated with 1 or 3 mg/kg (left panels, triangle), 10 mg/kg (middle panels, circle), and 20 mg/kg (right panels, square) of avelumab
Fig. 5
Fig. 5
ADCC assay using PBMC from healthy donors or H441 human lung tumor cells as targets. a PD-L1 expression in H441 cells. b NK cells were purified from PBMC from five healthy donors using negative magnetic selection. In vitro ADCC assays were performed at effector:target ratios of 25:1, 12.5:1, and 6.25:1, using an IgG1 isotype control antibody (gray bars, 1 ng/mL) or avelumab (black bars, 1 ng/mL). Results are displayed as mean + SEM of triplicate wells
Fig. 6
Fig. 6
ADCC assay using NK cells from a cancer patient with NSCLC against autologous PBMC sorted to enrich for PD-L1, or H460 or H441 human lung tumor cells. a PD-L1 expression in total PBMC, and PBMC magnetically sorted via negative and positive selection to enrich for PD-L1 negative and PD-L1 positive fractions, respectively. b PD-L1 expression in H460 and H441 cells. c NK cells were purified from PBMC from a cancer patient using negative magnetic selection. In vitro ADCC assays were performed at effector:target ratio of 25:1, using an IgG1 isotype control antibody (gray bars, 1 ng/mL) or avelumab (black bars, 1 ng/mL). Results are displayed as mean + SEM of triplicate wells. Data analyzed with unpaired T-test comparing avelumab vs isotype control; **p < 0.01, ***p < 0.001; ns: not significant. d Comparison of PD-L1 expression (% positivity and mean fluorescence intensity, MFI) in the PD-L1+ enriched PBMC fraction from three cancer patients compared to H460 and H441 cells
Fig. 7
Fig. 7
Effect of avelumab on soluble factors. Plasma levels of sCD27 and sCD40L were measured at baseline (pre-therapy) and following one cycle (a, n = 39) and three cycles (b, n = 33) of avelumab. Graphs display the ratio of sCD27 to sCD40L. Following one and three cycles of avelumab, there was a statistically significant increase in the ratio (p = 0.0087 and p = 0.0001, respectively, using the Wilcoxon matched-pairs signed rank test)

References

    1. Callahan MK, et al. Targeting T cell co-receptors for cancer therapy. Immunity. 2016;44:1069–1078. doi: 10.1016/j.immuni.2016.04.023.
    1. Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–247. doi: 10.1038/nrd.2015.35.
    1. Boyerinas B, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3:1148–1157. doi: 10.1158/2326-6066.CIR-15-0059.
    1. Fujii R, et al. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget. 2016;7:33498–5110.
    1. Khanna S, et al. Malignant mesothelioma effusions are infiltrated by CD3+ T cells highly expressing PD-L1 and the PD-L1+ tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody avelumab. J Thorac Oncol. 2016;11:1993–200. doi: 10.1016/j.jtho.2016.07.033.
    1. Vandeveer AJ, et al. Systemic immunotherapy of non-muscle invasive mouse bladder cancer with avelumab, an anti-PD-L1 immune checkpoint inhibitor. Cancer Immunol Res. 2016;4:452–462. doi: 10.1158/2326-6066.CIR-15-0176.
    1. Grenga I, et al. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses. Clin Transl Immunol. 2016;5:e83. doi: 10.1038/cti.2016.27.
    1. Cheol Chung H, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: Analysis of safety and clinical activity. American Society of Clinical Oncology 2016 Annual Meeting. J Clin Oncol. 2016;34 (suppl; abstr 4009).
    1. Disis ML, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with recurrent/refractory ovarian cancer from the JAVELIN solid tumor phase Ib trial: safety and clinical activity. American Society of Clinical Oncology 2016 Annual Meeting. J Clin Oncol. 2016; 34 (suppl; abstr 5533).
    1. Hassan R, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced unresectable mesothelioma from the JAVELIN solid tumor phase Ib trial: safety, clinical activity, and PD-L1 expression [abstract]. American Socity of Clinical Oncology 2016 Annual Meeting. J Clin Oncol. 2016; 34 (suppl) 8503.
    1. Kelly K, et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with metastatic or locally advanced solid tumors: assessment of safety and tolerability in a phase I, open-label expansion study. J Clin Oncol. 2015;33(suppl):abstr 3044.
    1. Rajan A, et al. Safety and clinical activity of anti-programed death-ligand 1 (PD-L1) antibody (ab) avelumab (MSB0010718C) in advanced thymic epithelial tumors (TETs). ASCO Annual Meeting J Clin Oncol. 2016;34 (suppl; abstr e20106).
    1. Verschraegen CF, et al. Avelumab (MSB0010718C; anti-PD-L1) as a first-line treatment for patients with advanced NSCLC from the JAVELIN solid tumor phase 1b trial: safety, clinical activity, and PD-L1 expression. American Society of Clinical Oncology 2016 Annual Meeting. J Clin Oncol. 2016;34 (suppl; abstr 9036).
    1. Kaufman HL, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–850.
    1. Lepone LM, et al. Analyses of 123 peripheral human immune cell subsets: defining differences with age and between healthy donors and cancer patients not detected in analysis of standard immune cell types. J Circ Biomark. 2016;5. doi:10.05772/623220.
    1. Madan RA, et al. Effect of talactoferrin alfa on the immune system in adults with non-small cell lung cancer. Oncologist. 2013;18:821–822. doi: 10.1634/theoncologist.2013-0199.
    1. Madan RA, et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:501–508. doi: 10.1016/S1470-2045(12)70006-2.
    1. Ravetch JV, et al. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989;170:481–497. doi: 10.1084/jem.170.2.481.
    1. Feise RJ. Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol. 2002;2:8. doi: 10.1186/1471-2288-2-8.
    1. Wang W, et al. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368.
    1. Huang J, et al. Soluble CD27-pool in humans may contribute to T cell activation and tumor immunity. J Immunol. 2013;190:6250–6258. doi: 10.4049/jimmunol.1300022.
    1. Huang J, et al. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood. 2012;120:3030–3038. doi: 10.1182/blood-2012-05-427799.
    1. Taylor RJ, et al. FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother. 2009;58:997–1006. doi: 10.1007/s00262-008-0613-3.
    1. Conlon KC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33:74–82. doi: 10.1200/JCO.2014.57.3329.
    1. Waldmann TA. Interleukin-15 in the treatment of cancer. Expert Rev Clin Immunol. 2014;10:1689–1701. doi: 10.1586/1744666X.2014.973856.
    1. Chen S, et al. A targeted IL-15 fusion protein with potent anti-tumor activity. Cancer Biol Ther. 2015;16:1415–1421. doi: 10.1080/15384047.2015.1071739.
    1. Dubois S, et al. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008;180:2099–2106. doi: 10.4049/jimmunol.180.4.2099.
    1. Lehrnbecher T, et al. Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood. 1999;94:4220–4232.
    1. Farsaci B, et al. Analyses of pretherapy peripheral immunoscore and response to vaccine therapy. Cancer Immunol Res. 2016;4:755–765. doi: 10.1158/2326-6066.CIR-16-0037.
    1. Czystowska M, et al. The immune signature of CD8(+)CCR7(+) T cells in the peripheral circulation associates with disease recurrence in patients with HNSCC. Clin Cancer Res. 2013;19:889–899. doi: 10.1158/1078-0432.CCR-12-2191.
    1. Jordan KR, et al. Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother. 2013;62:1711–1722. doi: 10.1007/s00262-013-1475-x.
    1. Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964. doi: 10.1126/science.1129139.
    1. Campbell DE, et al. Cryopreservation decreases receptor PD-1 and ligand PD-L1 coinhibitory expression on peripheral blood mononuclear cell-derived T cells and monocytes. Clin Vaccine Immunol. 2009;16:1648–1653. doi: 10.1128/CVI.00259-09.
    1. Binyamin L, et al. Blocking NK Cell Inhibitory Self-Recognition Promotes Antibody-Dependent Cellular Cytotoxicity in a Model of Anti-Lymphoma Therapy. J Immunol. 2008;180:6392–6401. doi: 10.4049/jimmunol.180.9.6392.
    1. Voskens CJ, et al. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity. J Exp Clin Cancer Res. 2010;29:134. doi: 10.1186/1756-9966-29-134.

Source: PubMed

3
Předplatit