Poor prognosis patients with inoperable locally advanced NSCLC and large tumors benefit from palliative chemoradiotherapy: a subset analysis from a randomized clinical phase III trial

Hans H Strøm, Roy M Bremnes, Stein H Sundstrøm, Nina Helbekkmo, Ulf Aasebø, Hans H Strøm, Roy M Bremnes, Stein H Sundstrøm, Nina Helbekkmo, Ulf Aasebø

Abstract

Introduction: Poor prognosis patients with bulky stage III locally advanced non-small-cell lung cancer may not be offered concurrent chemoradiotherapy (CRT). Following a phase III trial concerning the effect of palliative CRT in inoperable poor prognosis patients, this analysis was performed to explore how tumor size influenced survival and health-related quality of life (HRQOL).

Methods: A total of 188 poor prognosis patients recruited in a randomized clinical trial received four courses intravenous carboplatin day 1 and oral vinorelbine day 1 and 8, at 3-week intervals. The experimental arm (N = 94) received radiotherapy with fractionation 42 Gy/15, starting at the second chemotherapy course. This subset study compares outcomes in patients with tumors larger than 7 cm (N = 108) versus tumors 7 cm or smaller (N = 76).

Results: Among those with tumors larger than 7 cm, the median overall survival in the chemotherapy versus CRT arm was 9.7 and 13.4 months, respectively (p = 0.001). The 1-year survival was 33% and 56%, respectively (p = 0.01). Except for a temporary decline during treatment, HRQOL was maintained in the CRT arm, regardless of tumor size. Among those who did not receive CRT, patients with tumors larger than 7 cm experienced a gradual decline in the HRQOL. The CRT group had significantly more esophagitis and hospitalizations because of side effects regardless of tumor size.

Conclusion: In patients with poor prognosis and inoperable locally advanced non-small-cell lung cancer, large tumor size should not be considered a negative predictive factor. Except for performance status 2, patients with tumors larger than 7 cm apparently benefit from CRT.

Conflict of interest statement

Disclosure: Dr. Strøm has received payment for lectures from Glaxo Wellcome and support for travel to meetings from Perre Fabre and Glaxo Wellcome. The remaining authors declare no conflict of interest.

Figures

FIGURE 1.
FIGURE 1.
Kaplan–Meier plots for (A) TTP for patients with tumors 7 cm or smaller; (B) TTP for patients with tumors larger than 7 cm; (C) overall survival for patients with tumors 7 cm or smaller; (D) overall survival for tumors larger than 7 cm; (E) 1- and 2-year survival in both groups. CI, confidence interval; TTP, time to progression.
FIGURE 2.
FIGURE 2.
Mean changes in the selected domains of HRQOL measurements. A high score for dysphagia indicates more pronounced symptoms, whereas higher score for the change in Global Quality of Life indicates better function. HRQOL, health-related quality of life.

References

    1. Cancer Registry N. Cancer in Norway 2009. Cancer Registry of Norway. 2011. pp. Pp. 1–169.
    1. Rolke HB, Bakke PS, Gallefoss F. Delays in the diagnostic pathways for primary pulmonary carcinoma in Southern Norway. Respir Med. 2007;101:1251–1257.
    1. Lester JF, Macbeth FR, Toy E, Coles B. Palliative radiotherapy regimens for non-small cell lung cancer. Cochrane Database Syst Rev. 2006;(4):CD002143.
    1. Morgensztern D, Waqar S, Subramanian J, Gao F, Trinkaus K, Govindan R. Prognostic significance of tumor size in patients with stage III non-small-cell lung cancer: a surveillance, epidemiology, and end results (SEER) survey from 1998 to 2003. J Thorac Oncol. 2012;7:1479–1484.
    1. Alexander BM, Othus M, Caglar HB, Allen AM. Tumor volume is a prognostic factor in non-small-cell lung cancer treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:1381–1387.
    1. Wiersma TG, Dahele M, Verbakel WF, et al. Concurrent chemoradiotherapy for large-volume locally-advanced non-small cell lung cancer. Lung Cancer. 2013;80:62–67.
    1. Basaki K, Abe Y, Aoki M, Kondo H, Hatayama Y, Nakaji S. Prognostic factors for survival in stage III non-small-cell lung cancer treated with definitive radiation therapy: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2006;64:449–454.
    1. De Petris L, Lax I, Sirzén F, Friesland S. Role of gross tumor volume on outcome and of dose parameters on toxicity of patients undergoing chemoradiotherapy for locally advanced non-small cell lung cancer. Med Oncol. 2005;22:375–381.
    1. Bradley JD, Ieumwananonthachai N, Purdy JA, et al. Gross tumor volume, critical prognostic factor in patients treated with three-dimensional conformal radiation therapy for non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys. 2002;52:49–57.
    1. Ball D, Mitchell A, Giroux D, Rami-Porta R IASLC Staging Committee and Participating Institutions. Effect of tumor size on prognosis in patients treated with radical radiotherapy or chemoradiotherapy for non-small cell lung cancer. An analysis of the staging project database of the International Association for the Study of Lung Cancer. J Thorac Oncol. 2013;8:315–321.
    1. O’Rourke N, Roqué I Figuls M, Farré Bernadó N, Macbeth F. Concurrent chemoradiotherapy in non-small cell lung cancer. Cochrane Database Syst Rev. 2010;(6):CD002140.
    1. Uitterhoeve ALJ, Koolen MGJ, van Os RM, et al. Accelerated high-dose radiotherapy alone or combined with either concomitant or sequential chemotherapy; treatments of choice in patients with non-small cell lung cancer. Radiat Oncol. 2007;2:27.
    1. Belderbos J, Uitterhoeve L, van Zandwijk N, et al. EORTC LCG and RT Group. Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972-22973). Eur J Cancer. 2007;43:114–121.
    1. Bradley JD, Hope A, El Naqa I, et al. RTOG. A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys. 2007;69:985–992.
    1. Strøm HH, Bremnes RM, Sundstrøm SH, Helbekkmo N, Fløtten O, Aasebø U. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small-cell lung cancer: a randomised trial by the Norwegian Lung Cancer Study Group. Br J Cancer. 2013;109:1467–1475.
    1. World Health Organization. WHO Handbook for Reporting Results of Cancer Treatment. 1979. p. 1.
    1. Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol. 1989;7:1748–1756.
    1. Claassens L, van Meerbeeck J, Coens C, et al. Health-related quality of life in non-small-cell lung cancer: an update of a systematic review on methodologic issues in randomized controlled trials. J Clin Oncol. 2011;29:2104–2120.
    1. Groome PA, Bolejack V, Crowley JJ, et al. IASLC International Staging Committee; Cancer Research and Biostatistics; Observers to the Committee; Participating Institutions. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2:694–705.
    1. Fayers P, Bottomley A EORTC Quality of Life Group; Quality of Life Unit. Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur J Cancer. 2002;38(Suppl 4):S125–S133.
    1. Fayers P, Aaronson N, Bjordal K, et al. EORTC QLQ-C30 Scoring Manual. 3rd Ed. Brussels, Belgium: European Organisation for Research and Treatment of Cancer; 2001.
    1. Osoba D, Bezjak A, Brundage M, Zee B, Tu D, Pater J Quality of Life Committee of the NCIC CTG. Analysis and interpretation of health-related quality-of-life data from clinical trials: basic approach of The National Cancer Institute of Canada Clinical Trials Group. Eur J Cancer. 2005;41:280–287.
    1. Brundage M, Osoba D, Bezjak A, Tu D, Palmer M, Pater J National Cancer Institute of Canada Clinical Trials Group. Lessons learned in the assessment of health-related quality of life: selected examples from the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:5078–5081.
    1. Crinò L, Weder W, van Meerbeeck J, Felip E ESMO Guidelines Working Group. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v103–v115.
    1. Moore R, Doherty D, Chamberlain R. Sex differences in survival in non-small cell lung cancer patients 1974–1998. Acta Oncol. 2004;43:57–64.
    1. Cerfolio RJ, Bryant AS, Scott E, et al. Women with pathologic stage I, II, and III non-small cell lung cancer have better survival than men. Chest. 2006;130:1796–1802.
    1. Visbal AL, Williams BA, Nichols FC, et al. Gender differences in non-small-cell lung cancer survival: an analysis of 4,618 patients diagnosed between 1997 and 2002. Ann Thorac Surg. 2004;78:209–215.
    1. Jeremić B, Miličić B, Milisavljevic S. Clinical prognostic factors in patients with locally advanced (stage III) nonsmall cell lung cancer treated with hyperfractionated radiation therapy with and without concurrent chemotherapy: single-Institution Experience in 600 Patients. Cancer. 2011;117:2995–3003.
    1. Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122:1037–1057.
    1. Buccheri G, Ferrigno D. Importance of weight loss definition in the prognostic evaluation of non-small-cell lung cancer. Lung Cancer. 2001;34:433–440.
    1. Werner-Wasik M, Paulus R, Curran WJ, Jr, Byhardt R. Acute esophagitis and late lung toxicity in concurrent chemoradiotherapy trials in patients with locally advanced non-small-cell lung cancer: analysis of the radiation therapy oncology group (RTOG) database. Clin Lung Cancer. 2011;12:245–251.
    1. Phernambucq ECJ, Spoelstra FOB, Verbakel WFAR, et al. Outcomes of concurrent chemoradiotherapy in patients with stage III non-small-cell lung cancer and significant comorbidity. Ann Oncol. 2011;22:132–138.
    1. Wang XS, Fairclough DL, Liao Z, et al. Longitudinal study of the relationship between chemoradiation therapy for non-small-cell lung cancer and patient symptoms. J Clin Oncol. 2006;24:4485–4491.
    1. Pijls-Johannesma M, Houben R, Boersma L, et al. High-dose radiotherapy or concurrent chemo-radiation in lung cancer patients only induces a temporary, reversible decline in QoL. Radiother Oncol. 2009;91:443–448.
    1. Ball D, Smith J, Wirth A, Mac Manus M. Failure of T stage to predict survival in patients with non-small-cell lung cancer treated by radiotherapy with or without concomitant chemotherapy. Int J Radiat Oncol Biol Phys. 2002;54:1007–1013.
    1. Dehing-Oberije C, De Ruysscher D, van der Weide H, et al. Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo)radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:1039–1044.
    1. Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer. 2008;44:946–953.
    1. Italiano A. Prognostic or predictive? It’s time to get back to definitions! J Clin Oncol. 2011;29:4718; author reply 4718–4718; author reply 4719.
    1. Werner-Wasik M, Swann RS, Bradley J, et al. Increasing tumor volume is predictive of poor overall and progression-free survival: secondary analysis of the Radiation Therapy Oncology Group 93-11 phase I-II radiation dose-escalation study in patients with inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;70:385–390.
    1. Aupérin A, Le Péchoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:2181–2190.
    1. Zhao L, West BT, Hayman JA, Lyons S, Cease K, Kong FM. High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;68:103–110.

Source: PubMed

3
Předplatit