"Telling me not to worry…" Hyperscanning and Neural Dynamics of Emotion Processing During Guided Imagery and Music

Jörg C Fachner, Clemens Maidhof, Denise Grocke, Inge Nygaard Pedersen, Gro Trondalen, Gerhard Tucek, Lars O Bonde, Jörg C Fachner, Clemens Maidhof, Denise Grocke, Inge Nygaard Pedersen, Gro Trondalen, Gerhard Tucek, Lars O Bonde

Abstract

To analyze how emotions and imagery are shared, processed and recognized in Guided Imagery and Music, we measured the brain activity of an experienced therapist ("Guide") and client ("Traveler") with dual-EEG in a real therapy session about potential death of family members. Synchronously with the EEG, the session was video-taped and then micro-analyzed. Four raters identified therapeutically important moments of interest (MOI) and no-interest (MONI) which were transcribed and annotated. Several indices of emotion- and imagery-related processing were analyzed: frontal and parietal alpha asymmetry, frontal midline theta, and occipital alpha activity. Session ratings showed overlaps across all raters, confirming the importance of these MOIs, which showed different cortical activity in visual areas compared to resting-state. MOI 1 was a pivotal moment including an important imagery with a message of hope from a close family member, while in the second MOI the Traveler sent a message to an unborn baby. Generally, results seemed to indicate that the emotions of Traveler and Guide during important moments were not positive, pleasurably or relaxed when compared to resting-state, confirming both were dealing with negative emotions and anxiety that had to be contained in the interpersonal process. However, the temporal dynamics of emotion-related markers suggested shifts in emotional valence and intensity during these important, personally meaningful moments; for example, during receiving the message of hope, an increase of frontal alpha asymmetry was observed, reflecting increased positive emotional processing. EEG source localization during the message suggested a peak activation in left middle temporal gyrus. Interestingly, peaks in emotional markers in the Guide partly paralleled the Traveler's peaks; for example, during the Guide's strong feeling of mutuality in MOI 2, the time series of frontal alpha asymmetries showed a significant cross-correlation, indicating similar emotional processing in Traveler and Guide. Investigating the moment-to-moment interaction in music therapy showed how asymmetry peaks align with the situated cognition of Traveler and Guide along the emotional contour of the music, representing the highs and lows during the therapy process. Combining dual-EEG with detailed audiovisual and qualitative data seems to be a promising approach for further research into music therapy.

Keywords: EEG; alpha asymmetry; dyadic interaction; emotion; imagery; moments of interest; music therapy; social neuroscience.

Figures

Figure 1
Figure 1
Ratings and overlaps of the Guide-Traveler dyad and 2 independent raters. The red shaded areas show the segments that entered the subsequent analyses (“MOIs”). Note: Timeline displays amounts of seconds related to EEG recording; colors match with Table 1.
Figure 2
Figure 2
Mean alpha power over occipital ROI for (A) Traveler and (B) Guide. Error bars represent ± 2 standard error of the mean.
Figure 3
Figure 3
Topographic distribution of alpha power of the Traveler during Rest, MOI 1, MOI 2, and MONI. Red colors represent more alpha power, indicating less cortical activity.
Figure 4
Figure 4
MOI 1, Segment 1. Time course of frontal alpha asymmetry (F3/4, 0.5 s bins), indicating interplay of emotional processing of Guide (Green) and Traveler (Blue). For a description of event-related peaks, see Table 3.
Figure 5
Figure 5
MOI 1, Segment 2. Time course of frontal alpha asymmetry (F3/4, 0.5 s bins), indicating interplay of emotional processing of Guide (Green) and Traveler (Blue). For a description of event-related peaks, see Table 4.
Figure 6
Figure 6
MOI 2, Segment 1. Time course of frontal and parietal alpha asymmetry (F3/4, P3/4, 0.5 s bins), indicating interplay of emotional processing of Guide (Green) and Traveler (Blue). For a description of event-related peaks, see Table 5.
Figure 7
Figure 7
MOI 2, Segment 2. Time course of frontal and parietal alpha asymmetry (F3/4, P3/4, 0.5 s bins), indicating interplay of emotional processing of Guide (Green) and Traveler (Blue). For a description of event-related peaks, see Table 6.
Figure 8
Figure 8
MOI 2, Extended Segment 2. Time course of frontal alpha asymmetry at electrode F3/F4 of Guide and Traveler that entered cross-correlation analysis.
Figure 9
Figure 9
LORETA source localization results. The left panel shows localization estimates for a 5s segment of MOI 1, While the right panel shows estimates for a 5s segment of MONI. In both conditions, the peak activation was estimated to occur in the posterior part of the Middle Temporal Gyrus (BA 39), but was less pronounced during the MONI.

References

    1. Acquadro M. A. S., Congedo M., De Riddeer D. (2016). Music performance as an experimental approach to hyperscanning studies. Front. Hum. Neurosci. 10:242. 10.3389/fnhum.2016.00242
    1. Aftanas L. I., Golocheikine S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci. Lett. 310, 57–60. 10.1016/S0304-3940(01)02094-8
    1. Aldridge D. (2004). Case Studies in Music Therapy Research. London. Jessica Kingsley Publishers.
    1. Allen J. J. B., Coan J. A., Nazarian M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol. Psychol. 67, 183–218. 10.1016/j.biopsycho.2004.03.007
    1. Allen J. J. B., Cohen M. X. (2010). Deconstructing the 'resting' state: exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression. Front. Hum. Neurosci. 5:12 10.3389/fnhum.2010.00232
    1. Allen J. J. B., Reznik S. J. (2015). Frontal EEG asymmetry as a promising marker of depression vulnerability: summary and methodological considerations. Curr. Opin. Psychol. 4, 93–97. 10.1016/j.copsyc.2014.12.017
    1. Altenmuller E., Schurmann K., Lim V. K., Parlitz D. (2002). Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40, 2242–2256. 10.1016/S0028-3932(02)00107-0
    1. Arjmand H.-A., Hohagen J., Paton B., Rickard N. S. (2017). Emotional responses to music: shifts in frontal brain asymmetry mark periods of musical change. Front. Psychol. 8:2044. 10.3389/fpsyg.2017.02044
    1. Benedek M., Schickel R. J., Jauk E., Fink A., Neubauer A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56, 393–400. 10.1016/j.neuropsychologia.2014.02.010
    1. Blom K. M. (2011). Transpersonal-spiritual BMGIM experiences and the process of surrender AU Nordic J. Music Ther. 20, 185–203. 10.1080/08098131.2010.487645
    1. Blom K. M. (2014). Experiences of Transcendence and the Process of Surrender in Guided Imagery And Music (GIM). (PhD Monograph) Aalborg University, Denmark.
    1. Bonde L. O. (2004). “To draw from bits and pieces a more supportable narrative”. An introduction to Paul Ricoeur's theory of metaphor and narrative and a discussion of its relevance for a hermeneutic understanding of music-assisted imagery in The Bonny Method of Guided Imagery and Music (BMGIM). Can. J. Music Ther. 11, 31–62.
    1. Bonde L. O. (2019). “Multi-modal imagery in the receptive music therapy model Guided Imagery and Music (GIM),” in Oxford Handbook of Sound & Imagination, eds. Grimshaw M., Walther-Hansen M., Knakkergaard M. (Oxford: Oxford University; ), 427–444.
    1. Bonde L. O., Beck B. D. (2019). “Imagining nature during music listening. An exploration of the meaning, sharing and therapeutic potential of nature imagery in guided imagery and music,” in Nature in Psychotherapy and Arts Therapies, Vol. 2, ed Pfeifer E. [under constant involvement of H. H. Decker-Voigt] (Gießen: Psychosozial-Verlag; ), 147–168.
    1. Bonny H. (1978). The Role of Taped Music Programs in the GIM process. Baltimore, MD: ICM.
    1. Bonny H. (1980a). GIM Therapy - Past, Present and Future Implications. Salina, KS: The Bonny Foundation.
    1. Bonny H. (1980b). Nurturing. A GIM Music Program. Baltimore MD: Institute for Consciousness and Music.
    1. Bonny H. (2002). Music and Consciousness: The Evolution of Guided Imagery and Music. Gilsum, NH: Barcelona Publishers.
    1. Bonny H. L., Pahnke W. N. (1972). The use of music in psychedelic (LSD) psychotherapy. J. Music Ther. 9, 64–87. 10.1093/jmt/9.2.64
    1. Bruscia K. E. (1991). Case Studies in Music Therapy. Phoenixville, PA: Barcelona Publishers.
    1. Bruscia K. E. (2002). “The boundaries of Guided Imagery and Music and the Bonny method,” in Guided Imagery and Music: The Bonny method and beyond, eds. Bruscia K.E., Grocke D. (Gilsum NH: Barcelona Publishers, 37–62.
    1. Carhart-Harris R. L., Friston K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133(Pt 4), 1265–1283. 10.1093/brain/awq010
    1. Cooper N. R., Croft R. J., Dominey S. J. J., Burgess A. P., Gruzelier J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 47, 65–74. 10.1016/S0167-8760(02)00107-1
    1. Cuevas J. L., Cook E. W., Richter J. E., McCutcheon M., Taub E. (1995). Spontaneous swallowing rate and emotional state. Digest. Dis. Sci. 40, 282–286. 10.1007/BF02065410
    1. D'Ausilio A., Novembre G., Fadiga L., Keller P. E. (2015). What can music tell us about social interaction? Trends Cogn. Sci. 19, 111–114. 10.1016/j.tics.2015.01.005
    1. Davidson R. J. (2004). What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol. Psychol. 67, 219–233. 10.1016/j.biopsycho.2004.03.008
    1. De Rios M. D. (1972). Visionary Vine: Hallucinogenic Healing in the Peruvian Amazon. San Francisco, CA: Chandler.
    1. Debener S., Minow F., Emkes R., Gandras K., de Vos M. (2012). How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1449–1453. 10.1111/j.1469-8986.2012.01471.x
    1. Dukic H., Parncutt R., Bunt L. (2019). Narrative archetype elicitation in the imagery of clients in guided imagery and music therapy sessions. Psychol. Music. 10.1177/0305735619854122
    1. Eerola T., Vuoskoski J. K. (2013). A review of music and emotion studies: approaches, emotion models, and stimuli. Music Percept. 30, 307–340. 10.1525/mp.2012.30.3.307
    1. Fachner J. (2011). “Time is the key – Music and ASC,” in Altering Consciousness: A Multidisciplinary Perspective, eds. Cardeña E., Winkelmann M. (Santa Barbara: Praeger, 355–376.
    1. Fachner J. (2014). Communicating change – meaningful moments, situated cognition and music therapy – a reply to North (2014). Psychol. Music 42, 791–799. 10.1177/0305735614547665
    1. Fachner J. (2016). “The future of music therapy research in neuroscience,” in Envisioning the Future of Music Therapy, ed. Dileo C. (Philadelphia: Temple University, 133–139.
    1. Fachner J. (2017). “Music, moments and healing processes: music therapy,” in Routledge Companion to Music Cognition, eds. Ashley R., Timmers R. (London: Routledge; ), 89–100. 10.4324/9781315194738-8
    1. Fachner J., Ala-Ruona E., Ole Bonde L. (2015). “Guided Imagery in Music - a neurometric EEG/LORETA case study,” in Ninth Triennial ESCOM Conference, eds. Ginsberg J., Lamont A., Bramley S. (Manchester, UK: European Society for the Cognitive Sciences of Music; ), 80.
    1. Fachner J., Gold C., Erkkil,ä J. (2013). Music therapy modulates fronto-temporal activity in the rest-EEG in depressed clients. Brain Topogr. 26, 338–354. 10.1007/s10548-012-0254-x
    1. Field T., Martinez A., Nawrocki T., Pickens J., Fox N. A., Schanberg S. (1998). Music shifts frontal EEG in depressed adolescents. Adolescence 33, 109–116.
    1. Fink A., Benedek M. (2014). EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123. 10.1016/j.neubiorev.2012.12.002
    1. Gold C., Fachner J., Erkkilä J. (2013). Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand. J. Psychol. 54, 118–126. 10.1111/sjop.12022
    1. Goldberg F. S. (2002). “A holographic field theory model of the bonny method of guided imagery and Music (BMGIM),” in Guided Imagery and Music. The Bonny Method and Beyond, eds. Brusica K. E., Grocke D. E. (Gilsum, NH: Barcelona Publishers, 359–378.
    1. Grocke D. (1999). A Phenomenological Study of Pivotal Moments in Guided Imagery and Music (GIM) Therapy. (PhD Monograph) Melbourne, VIC: University of Melbourne.
    1. Grocke D. (2002). “The Bonny music programs,” in Guided Imagery and Music: The Bonny Method and Beyond, eds. Bruscia K.E., Grocke D. (Gilsum, NH: Barcelona Publishers, 99–13.
    1. Grocke D., Moe T. (2015). Guided Imagery and Music (GIM) and Music Imagery Methods for Individual and Group Therapy. London and Philadelphia: Jessica Kingsley Publishers.
    1. Gur R. C., Jaggi J. L., Ragland J. D., Resnick S. M., Shtasel D., Muenz L., et al. . (1993). Effects of memory processing on regional brain activation: cerebral blood flow in normal subjects. Int. J. Neurosci. 72, 31–44. 10.3109/00207459308991621
    1. Harmon-Jones E. (2003). Early career award. clarifying the emotive functions of asymmetrical frontal cortical activity. Psychophysiology 40, 838–848. 10.1111/1469-8986.00121
    1. Harmon-Jones E., Gable P. A., Peterson C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol. Psychol. 84, 451–462. 10.1016/j.biopsycho.2009.08.010
    1. Heinschel J. A. (2002). A descriptive study of the interactive guided imagery experience. J. Holist. Nursing 20, 325–346. 10.1177/089801002237591
    1. Heller W., Nitscke J. B. (1997). Regional brain activity in emotion: a framework for understanding cognition in depression. Cogn. Emot. 11, 637–661. 10.1080/026999397379845a
    1. Hibben J. (1999). Inside Music Therapy: Client Experiences. Gilsum, NH: Barcelona Publishers.
    1. Hubbard T. L. (2010). Auditory imagery: empirical findings. Psychol. Bull. 136, 302–329. 10.1037/a0018436
    1. Hunt A. (2015). Boundaries and potentials of traditional and alternative neuroscience research methods in music therapy research. Front. Hum. Neurosci. 9:342. 10.3389/fnhum.2015.00342
    1. Hunt A. (2016). “First-Person Research,” in Music Therapy Research, 3 edn ed. Wheeler B. (Dallas: Barcelona Publishers, 443–467.
    1. Hunt A. M. (2011). A Neurophenomenological Description of the Guided Imagery and Music Experience. (PhD). Temple University.
    1. Huron D. B. (2006). Sweet Anticipation: Music and the Psychology of Expectation. Cambridge: MIT Press
    1. Iyer V. (2002). Embodied mind, situated cognition, and expressive microtiming in African-American music. Music Percept. 19, 387–414. 10.1525/mp.2002.19.3.387
    1. Jakobi U. E. (2009). A Meta-Analysis About EEG Alpha Asymmetries and Depression in Adults: Proof of a Vulnerability Marker for Depression. Saarbrücken: VDM Verlag Dr. Müller.
    1. Jäncke L., Kühnis J., Rogenmoser L., Elmer S. (2015). Time course of EEG oscillations during repeated listening of a well-known aria. Front. Hum. Neurosci. 9:401. 10.3389/fnhum.2015.00401
    1. Juslin P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Phys. Life Rev. 10, 235–266. 10.1016/j.plrev.2013.05.008
    1. Kaelen M., Barrett F. S., Roseman L., Lorenz R., Family N., Bolstridge M., et al. . (2015). LSD enhances the emotional response to music. Psychopharmacology 232, 3607–3614. 10.1007/s00213-015-4014-y
    1. Kaelen M., Giribaldi B., Raine J., Evans L., Timmerman C., Rodriguez N., et al. (2018a). The hidden therapist: evidence for a central role of music in psychedelic therapy. Psychopharmacology 235, 505–519. 10.1007/s00213-017-4820-5
    1. Kaelen M., Giribaldi B., Raine J., Evans L., Timmermann C., Rodriguez N., et al. . (2018b). Correction to: the hidden therapist: evidence for a central role of music in psychedelic therapy. Psychopharmacology 235:1623. 10.1007/s00213-018-4886-8
    1. Kaelen M., Roseman L., Kahan J., Santos-Ribeiro A., Orban C., Lorenz R., et al. . (2016). LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur Neuropsychopharmacol. 26, 1099–1109. 10.1016/j.euroneuro.2016.03.018
    1. Koelsch S. (2015). Music-evoked emotions: principles, brain correlates, and implications for therapy. Ann N Y Acad Sci. 1337, 193–201. 10.1111/nyas.12684
    1. Konvalinka I., Bauer M., Stahlhut C., Hansen L. K., Roepstorff A., Frith C. D. (2014). Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage 94, 79–88. 10.1016/j.neuroimage.2014.03.003
    1. Kreutz G., Ott U., Teichmann D., Osawa P., Vaitl D. (2008). Using music to induce emotions: Influences of musical preference and absorption. Psychol. Music 36, 101–126. 10.1177/0305735607082623
    1. Lee E. J., Bhattacharya J., Sohn C., Verres R. (2012). Monochord sounds and progressive muscle relaxation reduce anxiety and improve relaxation during chemotherapy: a pilot EEG study. Compl. Ther. Med. 20, 409–416. 10.1016/j.ctim.2012.07.002
    1. Lee S. E., Han Y., Park H. (2016). Neural activations of guided imagery and music in negative emotional processing: a functional MRI study. J. Music Ther. 53, 257–278. 10.1093/jmt/thw007
    1. Lehmann D., Strik W. K., Henggeler B., Koenig T., Koukkou M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int. J. Psychophysiol. 29, 1–11. 10.1016/S0167-8760(97)00098-6
    1. Lem A. (1998). EEG reveals potential connections between selected categories of imagery and the psycho-acoustic profile of music. Austr. J. Music Ther. 9, 3–17.
    1. Lin M.-F., Hsu M.-C., Chang H.-J., Hsu Y.-Y., Chou M.-H., Crawford P. (2010). Pivotal moments and changes in the Bonny method of guided imagery and music for patients with depression. J. Clin. Nursing 19, 1139–1148. 10.1111/j.1365-2702.2009.03140.x
    1. Maack C., Nolan P. (1999). The effects of guided imagery and music therapy on reported change in normal adults. J. Music Ther. 36, 39–55. 10.1093/jmt/36.1.39
    1. Maidhof C., Kästner T., Makkonen T. (2014). Combining EEG, MIDI, and motion capture techniques for investigating musical performance. Behav. Res. Methods 46, 185–195. 10.3758/s13428-013-0363-9
    1. Maratos A., Crawford M. J., Procter S. (2011). Music therapy for depression: it seems to work, but how? Br. J. Psychiatry 199, 92–93. 10.1192/bjp.bp.110.087494
    1. Michel C. M., Henggeler B., Brandeis D., Lehmann D. (1993). Localization of sources of brain alpha/theta/delta activity and the influence of the mode of spontaneous mentation. Physiol. Measure. 14:A21. 10.1088/0967-3334/14/4A/004
    1. Mikutta C., Altorfer A., Strik W., Koenig T. (2012). Emotions, arousal, and frontal alpha rhythm asymmetry during Beethoven's 5th Symphony. Brain Topogr. 25, 423–430. 10.1007/s10548-012-0227-0
    1. Miller E. B. (2011). Bio-Guided Music Therapy. London: Jessica Kingsley Publishers.
    1. Mitchell D. J., McNaughton N., Flanagan D., Kirk I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Prog. Neurobiol. 86, 156–185. 10.1016/j.pneurobio.2008.09.005
    1. Mizuki Y., Suetsugi M., Imai T., Kai S., Kajimura N., Yamada M. (1989). A physiological marker for assessing anxiety level in humans: frontal midline theta activity. Psychiatry Clin. Neurosci. 43, 619–626. 10.1111/j.1440-1819.1989.tb03096.x
    1. Müller V., Sänger J., Lindenberger U. (2013). Intra- and inter-brain synchronization during musical improvisation on the guitar. PLoS ONE. 8:e73852. 10.1371/journal.pone.0073852
    1. Nemati S., Akrami H., Salehi S., Esteky H., Moghimi S. (2019). Lost in music: neural signature of pleasure and its role in modulating attentional resources. Brain Res. 1711, 7–15. 10.1016/j.brainres.2019.01.011
    1. Ojemann J. G., Ojemann G. A., Lettich E. (1992). Neuronal activity related to faces and matching in human right nondominant temporal cortex. Brain 115 (Pt 1), 1–13. 10.1093/brain/115.1.1
    1. O'Kelly J., James L., Palaniappan R., Taborin J., Fachner J., Magee W. L. (2013). Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states. Front. Hum. Neurosci. 7:884. 10.3389/fnhum.2013.00884
    1. Pascual-Marqui R. D., Michel C. M., Lehmann D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65. 10.1016/0167-8760(84)90014-X
    1. Pfeifer E., Sarikaya A., Wittmann M. (2016). Changes in states of consciousness during a period of silence after a session of depth relaxation music therapy (DRMT). Music Med. 8, 180–186.
    1. R Development Core Team (2008). R: A Language and Environment for Statistical Computing, Statistics. 360 edn. (Vienna, Austria: R Foundation for Statistical Computing). Avaialble online at: (accessed April 1, 2019).
    1. Ramirez R., Palencia-Lefler M., Giraldo S., Vamvakousis Z. (2015). Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 9:354. 10.3389/fnins.2015.00354
    1. Ramirez R., Planas J., Escude N., Mercade J., Farriols C. (2018). EEG-based analysis of the emotional effect of music therapy on palliative care cancer patients. Front. Psychol. 9:254. 10.3389/fpsyg.2018.00254
    1. Ridder H. M., Fachner J. (2016). “Objectivist case study research. Single-subject and small-n research,” in Music Therapy Research, 3 edn, eds. Wheeler B., Murphy K. (Dallas: Barcelona Publishers, 291–302.
    1. Ritz T., Thöns M. (2006). Affective modulation of swallowing rates: Unpleasantness or arousal? J. Psychosomat. Res. 61, 829–833. 10.1016/j.jpsychores.2006.05.008
    1. Rothschild F. S. (1962). Laws of symbolic mediation in the dynamics of self and personality *. Ann. NY. Acad. Sci. 96, 774–784. 10.1111/j.1749-6632.1962.tb50161.x
    1. Sammler D., Grigutsch M., Fritz T., Koelsch S. (2007). Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44, 293–304. 10.1111/j.1469-8986.2007.00497.x
    1. Sänger J., Müller V., Lindenberger U. (2013). Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Front. Hum. Neurosci. 7:234. 10.3389/fnhum.2013.00234
    1. Schaefer R. S., Vlek R. J., Desain P. (2011). Music perception and imagery in EEG: Alpha band effects of task and stimulus. Int. J. Psychophysiol. 82, 254–259. 10.1016/j.ijpsycho.2011.09.007
    1. Schäfer T., Fachner J., Smukalla M. (2013). Changes in the representation of space and time while listening to music. Front. Psychol. 4:508. 10.3389/fpsyg.2013.00508
    1. Schall A., Haberstroh J., Pantel J. (2015). Time series analysis of individual music therapy in dementia: effects on communication behavior and emotional well-being. GeroPsych. 28, 113–122. 10.1024/1662-9647/a000123
    1. Schiepek (2011). Neurobiologie der Psychotherapie. Stuttgart: Schattauer.
    1. Schmidt L. A., Trainor L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn. Emot. 15, 487–500. 10.1080/02699930126048
    1. Schwab D., Benedek M., Papousek I., Weiss E. M., Fink A. (2014). The time-course of EEG alpha power changes in creative ideation. Front. Hum. Neurosci. 8:310. 10.3389/fnhum.2014.00310
    1. Schwarz N. (2002). “Situated cognition and the wisdom of feelings: Cognitive tuning,” in The Wisdom in Feelings, eds. Barrett L. F., Salovey P. (New York: Guildford Press, 144–166.
    1. Shannon B. (2011). “Ayahuasca and music,” in Music and Consciousness, eds. Clarke E., Clarke D. (Oxford: Oxford University Press, 281–294.
    1. Smith E. E., Reznik S. J., Stewart J. L., Allen J. J. B. (2017). Assessing and conceptualizing frontal EEG asymmetry: an updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int. J. Psychophysiol. 111, 98–114. 10.1016/j.ijpsycho.2016.11.005
    1. Snodgrass M., Lynn S. J. (1989). Music absorption and hypnotizability. Int. J. Clin. Exp. Hypn. 37, 41–54. 10.1080/00207148908410532
    1. Spiro N., Himberg T. (2016). Analysing change in music therapy interactions of children with communication difficulties. Phil. Trans. R. Soc. B 371:20150374. 10.1098/rstb.2015.0374
    1. Stewart J. L., Towers D. N., Coan J. A., Allen J. J. B. (2011). The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder. Psychophysiology 48, 82–95. 10.1111/j.1469-8986.2010.01035.x
    1. Trondalen G. (2016). Relational Music Therapy: An Intersubjective Perspective. Dallas, TX: Barcelona Publishers.
    1. Trondalen G. (2019). “GIM and Life Transitions: A relational perspective,” in Guided Imagery and Music: The Bonny Method and Beyond, 2 edn, ed. Grocke D. (Dallas, TX Barcelona Publishers; ), 97–114.
    1. Tullett A. M., Harmon-Jones E., Inzlicht M. (2012). Right frontal cortical asymmetry predicts empathic reactions: support for a link between withdrawal motivation and empathy. Psychophysiology 49, 1145–1153. 10.1111/j.1469-8986.2012.01395.x
    1. Vartanian O., Goel V., Lam E., Fisher M., Granic J. (2013). Middle temporal gyrus encodes individual differences in perceived facial attractiveness. Psychol. Aesthet. Creat. Arts 7:38 10.1037/a0031591
    1. Wärja M., Bonde L. O. (2014). Music as co-therapist: towards a taxonomy of music in therapeutic music and imagery work. Music Med. 6, 16–27.
    1. Watzlawick P., Bavelas J. B., Jackson D. D. (2014). Pragmatics of Human Communication: a Study of Interactional Patterns, Pathologies, and Paradoxes. NewYork, NY: W. W. Norton & Company.
    1. Wittenburg P., Brugman H., Russel A., Klassmann A., Sloetjes H. (2006). “ELAN: a professional framework for multimodality research”, in Proceedings of LREC 2006, Fifth International Conference on Language Resources and Evaluation, (Genoa: LREC; ).
    1. Wosch T., Wigran T. (2007). “Microanalysis in music therapy: introduction and theoretical basis,” in Microanalysis in Music Therapy: Methods, Techniques and Applications for Clinicians, Researchers, Educators and Students, eds. Wosch T., Wigran T., Wheeler B. (London: JKP; ), 13–26.
    1. Yun J.-Y., Kim J.-C., Ku J., Shin J.-E., Kim J.-J., Choi S.-H. (2017). The left middle temporal gyrus in the middle of an impaired social-affective communication network in social anxiety disorder. J. Affect. Disord. 214, 53–59. 10.1016/j.jad.2017.01.043
    1. Zamm A., Palmer C., Bauer A.-K. R., Bleichner M. G., Demos A. P., Debener S. (2017). Synchronizing MIDI and wireless EEG measurements during natural piano performance. Brain Res. 1716, 27–38. 10.1016/j.brainres.2017.07.001

Source: PubMed

3
Předplatit