Health technology assessment review: Computerized glucose regulation in the intensive care unit--how to create artificial control

Miriam Hoekstra, Mathijs Vogelzang, Evgeny Verbitskiy, Maarten W N Nijsten, Miriam Hoekstra, Mathijs Vogelzang, Evgeny Verbitskiy, Maarten W N Nijsten

Abstract

Current care guidelines recommend glucose control (GC) in critically ill patients. To achieve GC, many ICUs have implemented a (nurse-based) protocol on paper. However, such protocols are often complex, time-consuming, and can cause iatrogenic hypoglycemia. Computerized glucose regulation protocols may improve patient safety, efficiency, and nurse compliance. Such computerized clinical decision support systems (Cuss) use more complex logic to provide an insulin infusion rate based on previous blood glucose levels and other parameters. A computerized CDSS for glucose control has the potential to reduce overall workload, reduce the chance of human cognitive failure, and improve glucose control. Several computer-assisted glucose regulation programs have been published recently. In order of increasing complexity, the three main types of algorithms used are computerized flowcharts, Proportional-Integral-Derivative (PID), and Model Predictive Control (MPC). PID is essentially a closed-loop feedback system, whereas MPC models the behavior of glucose and insulin in ICU patients. Although the best approach has not yet been determined, it should be noted that PID controllers are generally thought to be more robust than MPC systems. The computerized Cuss that are most likely to emerge are those that are fully a part of the routine workflow, use patient-specific characteristics and apply variable sampling intervals.

Figures

Figure 1
Figure 1
Model Predictive Control (MPC) versus Proportional-Integrate-Derivative (PID) control. When using MPC control, the driver determines ('calculates') his driving strategy before departure after careful investigation of the road. When he uses the correct information (input variables), he stays on the road (yellow car), but small errors in input variables can lead the car in the wrong direction (red and blue cars). The drivers using PID control readjust their driving strategy often by frequently calculating the difference with the 'ideal' track.

References

    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving sepsis campaign: international guideliness for management of severe sepsis and septic shock. Intensive Care Med. 2008;34:17–60. doi: 10.1007/s00134-007-0934-2.
    1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355:773–778. doi: 10.1016/S0140-6736(99)08415-9.
    1. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32:2426–2432. doi: 10.1161/hs1001.096194.
    1. Wahl WL, Taddonio M, Maggio PM, Arbabi S, Hemmila MR. Mean glucose values predict trauma patient mortality. J Trauma. 2008;65:42–47. doi: 10.1097/TA.0b013e318176c54e.
    1. Lipshultz AK, Gropper MA. Peri-operative glycemic control: an evidence based review. Anesthesiology. 2009;110:408–421.
    1. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–1478. doi: 10.4065/78.12.1471.
    1. Vogelzang M, Nijboer JM, Horst IC van der, Zijlstra F, ten Duis HJ, Nijsten MW. Hyperglycemia has a stronger relation with outcome in trauma patients than in other critically ill patients. J Trauma. 2006;60:873–877. doi: 10.1097/01.ta.0000195715.63978.80.
    1. Berghe G van den, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. Berghe G Van den, Wilmers A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–461. doi: 10.1056/NEJMoa052521.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–139. doi: 10.1056/NEJMoa070716.
    1. Devos P, Preiser JC, Mélot C. Impact of tight glucose control by intensive insulin therapy on ICU mortality and the rate of hypoglycaemia: final results of the Glucontrol study. Intensive Care Med. 2007;33(Suppl 2):S189.
    1. Treggiari MM, Karir V, Yanez ND, Weiss NS, Daniel S, Deem SA. Intensive insulin therapy and mortality in critically ill patients. Crit Care. 2008;12:R29. doi: 10.1186/cc6807.
    1. The NICE-SUGAR Study Investigators. Fikfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodele P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Griesdale DEG, deSouza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, Dhaliwal R, Henderson WR, Chittock DR, Finfer S, Talmor D. Insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180:821–827.
    1. Meijering S, Corstjens AM, Tulleken JE, Meertens JM, Zijlstra JG, Ligtenberg JM. Towards a feasible algorithm for tight glycaemic control in critically ill patients: a systematic review of the literature. Crit Care. 2006;10:R19. doi: 10.1186/cc3981.
    1. Kanji S, Singh A, Tierney M, Meggison H, McIntyre L, Hebert PC. Standardization of intravenous insulin therapy improves the efficiency and safety of blood glucose control in critically ill adults. Intensive Care Med. 2004;30:804–810. doi: 10.1007/s00134-004-2252-2.
    1. Krinsley JS, Grover A. Severe hypoglycaemia in critically ill patients: Risk factors and outcomes. Crit Care Med. 2007;35:2262–2267. doi: 10.1097/01.CCM.0000282073.98414.4B.
    1. Vriesendorp TM, de Vries JH, Hoekstra JB. Hypoglycemia and strict glycemic control in critically ill patients. Curr Opin Crit Care. 2008;14:397–402. doi: 10.1097/MCC.0b013e328306c7b1.
    1. Kaushal R, Shojania KG, bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med. 2003;163:1409–1416. doi: 10.1001/archinte.163.12.1409.
    1. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review. JAMA. 1998;280:1339–1346. doi: 10.1001/jama.280.15.1339.
    1. Boord JB, Sharifi M, Greevy RA, Griffin MR, Lee VK, Webb TA, May ME, Waitman LR, May AK, Miller RA. Computer-based insulin infusion protocol improves glycaemic control over manual protocol. J Am Med Inform Assoc. 2007;14:278–287. doi: 10.1197/jamia.M2292.
    1. Cordingley JJ, Vlasselaers D, Dormand NC, Wouters PJ, Squire SD, Chassin LJ, Wilinska ME, Morgan CJ, Hovorka R, Berghe G Van den. Intensive insulin therapy: enhanced Model Predicitive Control algorithm versus standard care. Intensive Care Med. 2009;35:123–128. doi: 10.1007/s00134-008-1236-z.
    1. Davidson PC, Steed RD, Bode BW. Glucommander: a computer-directed intravenous insulin system shown to be safe, simple and effective in 120,618 h of operation. Diabetes Care. 2005;28:2418–2423. doi: 10.2337/diacare.28.10.2418.
    1. Dortch MJ, Mowery NT, Ozdas A, Dossett L, Cao H, Collier B, Holder G, Miller RA, May AK. A computerized insulin infusion titration protocol improves glucose control with less hypoglycemia compared to a manual titration protocol in a trauma intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32:18–27. doi: 10.1177/014860710803200118.
    1. Hermayer KL, Neal DE, Hushion TV, Irving MG, Arnold PC, Kozlowski L, Stroud MR, Kerr FB, Kratz JM. Outcomes of a cardiothoracic intensive care web-based online intravenous insulin infusion calculator study at a medical university hospital. Diabetes Technol Ther. 2007;9:523–534. doi: 10.1089/dia.2007.0225.
    1. Horovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska L, Roubicek T, Wilinska ME, Chassin LJ, Svacina S, Haluzik M. Blood glucose control by a model predictive control algorithm with variable sampling rate versus a routine glucose management protocol in cardiac surgery patients: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92:2960–2964. doi: 10.1210/jc.2007-0434.
    1. Juneja R, Roudebush C, Kumar N, Macy A, Golas A, Wall D, Wolverton C, Nelson D, Carroll J, Flanders SJ. Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit. Diabetes Technol Ther. 2007;9:232–240. doi: 10.1089/dia.2006.0015.
    1. Laha SK, Taylor R, Collin SA, Ogden M, Thomas AN. Glucose control in critical illness using a web-based insulin dose calculator. Med Eng Phys. 2008;30:478–482. doi: 10.1016/j.medengphy.2007.05.010.
    1. Meyenaar IA, Dawson L, Tangkau PL, Salm EF, Rijks L. Introduction and evaluation of a computerized insulin protocol. Intensive Care Med. 2007;33:591–596. doi: 10.1007/s00134-006-0484-z.
    1. Morris AH, Orme J, Truwit JD, Steingrub J, Grissom C, Lee KH, Li GL, Thompson BT, Brower R, Tidswell M, Bernard GR, Sorenson D, Sward K, Zheng H, Schoenfeld D, Warner H. A replicable method for blood glucose control in critically ill patients. Crit Care Med. 2008;36:1787–1795. doi: 10.1097/CCM.0b013e3181743a5a.
    1. Pachler C, Plank J, Weinhandl H, Chassin LJ, Wilinska ME, Kulnik R, Kaufmann P, Smolle KH, Pilger E, Pieber TR, Ellmerer M, Hovorka R. Tight glycaemic control by an automated algorithm with time-variant sampling in medical ICU patients. Intensive Care Med. 2008;34:1224–1230. doi: 10.1007/s00134-008-1033-8.
    1. Plank J, Blaha J, Cordingley J, Wilinska ME, Chassin LJ, Morgan C, Squire S, Haluzik M, Kremen J, Svacina S, Toller W, Plasnik A, Ellmerer M, Hovorka R, Pieber TR. Multicenter, randomized, controlled trial to evaluate blood glucose by the model predictive control algorithm versus routine glucose management protocols in intensive care unit patients. Diabetes Care. 2006;29:271–276. doi: 10.2337/diacare.29.02.06.dc05-1689.
    1. Rood E, Bosman RJ, Spoel JI van der, Taylor P, Zandstra DF. Use of computerized guideline for glucose regulation in the intensive care unit improved both guideline adherence and glucose regulation. J Am Med Inform Assoc. pp. 172–180.
    1. Saager L, Collins GL, Burnside B, Tymkew H, Zhang L, Jacobsohn E, Avidan M. A randomized study in diabetic patients undergoing cardiac surgery comparing computer-guided glucose managment with a standard slinding scale protocol. J Cardiothorac Vasc Anesth. 2008;22:377–382. doi: 10.1053/j.jvca.2007.09.013.
    1. Shulman R, Finney S, O'Sullivan C, Glynne PA, Greene R. Tight glycaemic control: a prospective observational study of a computerized decision-supported intensive insulin therapy protocol. Crit Care. 2007;11:R75. doi: 10.1186/cc5964.
    1. Thomas AN, Marchant AE, Ogden MC, Collin S. Implementation of a tight glycaemic control protocol using a web-based insulin dose calculator. Anaesthesia. 2005;60:1093–1100. doi: 10.1111/j.1365-2044.2005.04375.x.
    1. Toschlog EA, Newton C, Allen N, Newell MA, Goettler CE, Schenarts PJ, Bard MR, Sagraves SG, Rotondo MF. Morbidity reduction in critically ill trauma patients through use of a computerized insulin infusion protocol: a preliminary study. J Trauma. 2007;62:1370–1375. doi: 10.1097/TA.0b013e318047b7dc.
    1. Vogelzang M, Loef BG, Regtien JG, Horst IC van der, van Assen H, Zijlstra F, Nijsten MWN. Computer-assisted glucose control in critically ill patients. Intensive Care Med. 2008;34:1421–1427. doi: 10.1007/s00134-008-1091-y.
    1. Clemens AH, Hough DL, D'OrazIo PA. Development of the Biostator Glucose clamping algorithm. Clin Chem. 1982;28:1899–1904.
    1. Vogelzang M, Zijlstra F, Nijsten MWN. Design and implementation of GRIP: a computerized glucose control system at a surgical intensive care unit. BMC Med Inform Decis Mak. 2005;5:38. doi: 10.1186/1472-6947-5-38.
    1. Wintergerst KA, Deiss D, Buckingham B, Cantwell M, Kache S, Agarwal S, Wilson DM, Steil G. Glucose control in pediatric intensive care unit patients using an insulin-glucose algorithm. Diabetes Technol Ther. 2007;9:211–222. doi: 10.1089/dia.2006.0031.
    1. Chee F, Fernando T. Closed-Loop Control of Blood Glucose, Lecture Notes in Control and Information Sciences. New York: Springer; 2007.
    1. Wilinska ME, Chassin L, Hovorka R. In silico testing - impact on the progress of the closed loop insulin infusion for critically ill patients project. J Diabetes Sci Technol. 2008;2:417–423.
    1. Steil GM, Deiss D, Shih J, Buckingham B, Weinzimer S, Agus MSD. Intensive care unit insulin delivery algorithms: Why so many? How to choose? J Diabetes Sci Technol. 2009;3:125–140.
    1. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV. Fully automated closed loop insulin delivery versus semi automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care. 2008;31:934–939. doi: 10.2337/dc07-1967.
    1. Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE. A feed-forward-feedback glucose control strategy for type 1 diabetes mellitus. J Process Control. 2008;18:149–162. doi: 10.1016/j.jprocont.2007.07.008.
    1. Klonoff DC. The artificial pancreas: how sweet engineering will solve bitter problems. J Diabetes Sci Technol. 2007;1:72–81.
    1. Bequette BW. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther. 2005;7:28–47. doi: 10.1089/dia.2005.7.28.
    1. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330:765. doi: 10.1136/bmj.38398.500764.8F.

Source: PubMed

3
Předplatit