Effects of a Short-Term Resistance-Training Program on Heart Rate Variability in Children With Cystic Fibrosis-A Randomized Controlled Trial

Agustín Jesús Estévez-González, Márcio Vinícius Fagundes Donadio, Fernando Cobo-Vicente, Álvaro Fernández-Luna, Verónica Sanz-Santiago, José Ramón Villa Asensi, Tamara Iturriaga Ramirez, Maria Fernández-Del-Valle, Ignacio Diez-Vega, Eneko Larumbe-Zabala, Margarita Pérez-Ruiz, Agustín Jesús Estévez-González, Márcio Vinícius Fagundes Donadio, Fernando Cobo-Vicente, Álvaro Fernández-Luna, Verónica Sanz-Santiago, José Ramón Villa Asensi, Tamara Iturriaga Ramirez, Maria Fernández-Del-Valle, Ignacio Diez-Vega, Eneko Larumbe-Zabala, Margarita Pérez-Ruiz

Abstract

Background: Cystic fibrosis (CF) affects the autonomic nervous system (ANS) and exercise in healthy children modulates the interaction between sympathetic and parasympathetic activity. This study aimed to evaluate the effects of a short-term resistance exercise program on heart rate variability (HRV) in children and adolescents with CF. Methods: A randomized controlled trial was carried out in children diagnosed with CF aged 6-18 years. Individuals were divided into two groups: control (CON) and resistance-training (EX). Individuals in the EX group completed an individualized guided resistance program (5-RM-60-80%) for 8 weeks (3 sessions of 60 min/week). Upper and lower limbs exercises (seated bench press, seated lateral row, and leg press) were used. HRV was measured using a Suunto watch with subjects in lying position. Results: Nineteen subjects (13 boys) were included (CON = 11; and EX = 8). Mean age was 12.2 ± 3.3, FEV1 (forced expiratory volume in the first second) z-score was 1.72 ± 1.54 and peak oxygen consumption (VO2peak) 42.7 ± 7.4 mL.Kg-1.min-1. Exercise induced significant changes in the frequency-domain variables, including a decrease in LF power (p = 0.001, d = 0.98) and LF/HF ratio (p = 0.020, d = 0.92), and an increase in HF power (p = 0.001, d = -0.97), compared to the CON group. No significant changes were found for time-domain variables, although increases with a moderate effect size were seen for SDNN (p = 0.152, d = -0.41) and RMSSD (p = 0.059, d = -0.49) compared to the CON group. Conclusion: A short-term resistance exercise-training program was able to modulate HRV in children and adolescents with CF presenting mild to moderate lung function impairment and good physical condition. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04293926.

Keywords: autonomic function; cystic fibrosis; exercise; heart rate variability; pediatrics; resistance.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Estévez-González, Donadio, Cobo-Vicente, Fernández-Luna, Sanz-Santiago, Villa Asensi, Iturriaga Ramirez, Fernández-del-Valle, Diez-Vega, Larumbe-Zabala and Pérez-Ruiz.

Figures

FIGURE 1
FIGURE 1
Flow chart of the study.
FIGURE 2
FIGURE 2
Effects of a short-term resistance-training program on heart rate variability (HRV) in children with cystic fibrosis. (A) LF, low frequency band; (B) HF, high frequency band; (C) LF/HF ratio; (D) SDNN, standard deviation of R-R intervals; (E) PNN50, percentage of successive R-R intervals that differ by more than 50 ms; and (F) RMSSD, root mean square of successive differences between normal heartbeats. ms, milliseconds; nu, normalized units; CON, control group; EX, exercise group. Data presented as mean and standard deviation. Differences were analyzed using a two-way analysis of variance (ANOVA) with repeated measures. *Indicates significant differences when p < 0.05.

References

    1. Abdul-Hameed U., Rangra P., Shareef M. Y., Hussain M. E. (2012). Reliability of 1-repetition maximum estimation for upper and lower body muscular strength measurement in untrained middle aged type 2 diabetic patients. Asian J. Sports Med. 3 267–273. 10.5812/asjsm.34549
    1. Abhishekh H. A., Nisarga P., Kisan R., Meghana A., Chandran S., Raju T., et al. (2013). Influence of age and gender on autonomic regulation of heart. J. Clin. Monit. Comput. 27 259–264. 10.1007/s10877-012-9424-3
    1. Antigny F., Girardin N., Raveau D., Frieden M., Becq F., Vandebrouck C. (2009). Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion 9 232–241. 10.1016/j.mito.2009.02.003
    1. Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4:26. 10.3389/fphys.2013.00026
    1. Caruso F. R., Arena R., Phillips S. A., Bonjorno J. C. J., Mendes R. G., Arakelian V. M., et al. (2015). Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur. J. Phys. Rehabil. Med. 51 281–289.
    1. Clay P. G. (2013). Treatments for cystic fibrosis, increasing solubility and bioavailability, and influenza vaccination dosage. J. Am. Pharm. Assoc. 53:448. 10.1331/JAPhA.2013.13528
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale, NJ: LEA.
    1. Davis P. B., Kaliner M. (1983). Autonomic nervous system abnormalities in cystic fibrosis. J. Chronic Dis. 36 269–278. 10.1016/0021-9681(83)90062-0
    1. Divangahi M., Balghi H., Danialou G., Comtois A. S., Demoule A., Ernest S., et al. (2009). Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice. PLoS Genet. 5:e1000586. 10.1371/journal.pgen.1000586
    1. Farah B. Q., Ritti-Dias R. M., Balagopal P. B., Hill J. O., Prado W. L. (2014). Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatr. Obes. 9 111–120. 10.1111/j.2047-6310.2012.00145.x
    1. Farinatti P., Neto S. R., Dias I., Cunha F. A., Bouskela E., Kraemer-Aguiar L. G. (2016). Short-term resistance training attenuates cardiac autonomic dysfunction in obese adolescents. Pediatr. Exerc. Sci. 28 374–380. 10.1123/pes.2015-0191
    1. Florêncio R., Fregonezi G., Brilhante S., Borghi-Silva A., Dias F., Resqueti V. (2013). Heart rate variability at rest and after the 6-minute walk test (6MWT) in children with cystic fibrosis. Brazilian J. Phys. Ther. 17 419–426. 10.1590/S1413-35552012005000109
    1. Gamelin F. X., Baquet G., Berthoin S., Thevenet D., Nourry C., Nottin S., et al. (2009). Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur. J. Appl. Physiol. 105 731–738. 10.1007/s00421-008-0955-8
    1. Gasior J. S., Sacha J., Pawlowski M., Zielinski J., Jelen P. J., Tomik A., et al. (2018). Normative values for heart rate variability parameters in school-aged children: simple approach considering differences in average heart rate. Front. Physiol. 9:1495. 10.3389/fphys.2018.01495
    1. Goessl V. C., Curtiss J. E., Hofmann S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychol. Med. 47 2578–2586. 10.1017/S0033291717001003
    1. Grant C. C., van Rensburg D. C. J., Strydom N., Viljoen M. (2011). Importance of tachogram length and period of recording during noninvasive investigation of the autonomic nervous system. Ann. Noninvasive Electrocardiol. 16 131–139. 10.1111/j.1542-474X.2011.00422.x
    1. Gruet M., Troosters T., Verges S. (2017). Peripheral muscle abnormalities in cystic fibrosis?: etiology, clinical implications and response to therapeutic interventions. J. Cyst. Fibros. 16 538–552. 10.1016/j.jcf.2017.02.007
    1. Gutin B., Owens S. (1999). Role of exercise intervention in improving body fat distribution and risk profile in children. Am. J. Hum. Biol. 11 237–247. 10.1002/(sici)1520-6300(1999)11:2<237::aid-ajhb11>;2-9
    1. Gutin B., Owens S., Slavens G., Riggs S., Treiber F. (1997). Effect of physical training on heart-period variability in obese children. J. Pediatr. 130 938–943. 10.1016/s0022-3476(97)70280-4
    1. Huang J., Lai Q., Wang D., Yin H., Liao J., Wang S., et al. (2019). Effects of exercise training with dietary restriction on arterial stiffness, central hemodynamic parameters and cardiac autonomic function in obese adolescents. Diabetes Metab. Syndr. Obes. 12 2157–2163. 10.2147/DMSO.S223514
    1. Kahle K. T., Staley K. J., Nahed B. V., Gamba G., Hebert S. C., Lifton R. P., et al. (2008). Roles of the cation - Chloride cotransporters in neurological disease. Nat. Clin. Pract. Neurol. 4 490–503. 10.1038/ncpneuro0883
    1. Kriemler S., Kieser S., Junge S., Ballmann M., Hebestreit A., Schindler C., et al. (2013). Effect of supervised training on FEV1 in cystic fibrosis: a randomised controlled trial. J. Cyst. Fibros. 12 714–720. 10.1016/j.jcf.2013.03.003
    1. Mandigout S., Melin A., Fauchier L., N’Guyen L. D., Courteix D., Obert P. (2002). Physical training increases heart rate variability in healthy prepubertal children. Eur. J. Clin. Invest. 32 479–487. 10.1046/j.1365-2362.2002.01017.x
    1. Manzi V., Castagna C., Padua E., Lombardo M., D’Ottavio S., Massaro M., et al. (2009). Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. Am. J. Physiol. Hear. Circ. Physiol. 296 H1733–H1740. 10.1152/ajpheart.00054.2009
    1. McNarry M. A., Lewis M. J., Wade N., Davies G. A., Winn C., Eddolls W. T. B., et al. (2019). Effect of asthma and six-months high-intensity interval training on heart rate variability during exercise in adolescents. J. Sports Sci. 37 2228–2235. 10.1080/02640414.2019.1626115
    1. McNarry M. A., Mackintosh K. A. (2016). Reproducibility of heart rate variability indices in children with cystic fibrosis. PLoS One 11:e0151464. 10.1371/journal.pone.0151464
    1. Moher D., Hopewell S., Schulz K. F., Montori V., Gøtzsche P. C., Devereaux P. J., et al. (2012). CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 10 28–55. 10.1016/j.ijsu.2011.10.001
    1. Malik M., Thomas Bigger J., John Camm A., Kleiger R. E., Malliani A., Moss A. J., et al. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology, and the North American Society of Pacing, and Electrophysiology. Eur. Heart J. 17 354–381. 10.1111/j.1542-474X.1996.tb00275.x
    1. Nunan D., Sandercock G. R. H., Brodie D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol. 33 1407–1417. 10.1111/j.1540-8159.2010.02841.x
    1. Prado D. M., Silva A. G., Trombetta I. C., Ribeiro M. M., Guazzelli I. C., Matos L. N., et al. (2010). Exercise training associated with diet improves heart rate recovery and cardiac autonomic nervous system activity in obese children. Int. J. Sports Med. 31 860–865. 10.1055/s-0030-1267158
    1. Quanjer P. H., Stanojevic S., Cole T. J., Baur X., Hall G. L., Culver B. H., et al. (2012). Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 40 1324–1343. 10.1183/09031936.00080312
    1. Radtke T., Nevitt S. J., Hebestreit H., Kriemler S. (2017). Physical exercise training for cystic fibrosis. Cochrane Database Syst. Rev. 11:CD002768. 10.1002/14651858.CD002768.pub4
    1. Reyes del Paso G. A., Langewitz W., Mulder L. J. M., van Roon A., Duschek S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 50 477–487. 10.1111/psyp.12027
    1. Reznikov L. R. (2017). Cystic fibrosis and the nervous system. Chest 151 1147–1155. 10.1016/j.chest.2016.11.009
    1. Santana Sosa E., Groeneveld I. F., Gonzalez-Saiz L., López-Mojares L. M., Villa-Asensi J. R., Barrio Gonzalez M. I., et al. (2012). Intrahospital weight and aerobic training in children with cystic fibrosis: a randomized controlled trial. Med. Sci. Sports Exerc. 44 2–11. 10.1249/MSS.0b013e318228c302
    1. Santana-Sosa E., Gonzalez-Saiz L., Groeneveld I. F., Villa-Asensi J. R., Barrio Gómez de Aguero M. I., Fleck S. J., et al. (2014). Benefits of combining inspiratory muscle with “whole muscle” training in children with cystic fibrosis: a randomised controlled trial. Br. J. Sports Med. 48 1513–1517. 10.1136/bjsports-2012-091892
    1. Savant A. P., McColley S. A. (2019). Cystic fibrosis year in review 2018, part 2. Pediatr. Pulmonol. 54 1129–1140. 10.1002/ppul.24365
    1. Vendrusculo F. M., Heinzmann-Filho J. P., da Silva J. S., Perez Ruiz M., Donadio M. V. F. (2019). Peak oxygen uptake and mortality in cystic fibrosis: systematic review and meta-analysis. Respir. Care 64 91–98. 10.4187/respcare.06185
    1. Wainwright B. J., Scambler P. J., Schmidtke J., Watson E. A., Law H. Y., Farrall M., et al. (1985). Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318 384–385. 10.1038/318384a0
    1. Winsley R. (2002). Acute and chronic effects of exercise on heart rate variability in adults and children: a review. Pediatr. Exerc. Sci. 14 328–344. 10.1123/pes.14.4.328
    1. World Health Organization (2018). Anthro Survey Analyser. Geneva: WHO.
    1. Zimmermann-Viehoff F., Thayer J., Koenig J., Herrmann C., Weber C. S., Deter H. C. (2016). Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers – A randomized crossover study. Nutr. Neurosci. 19 169–175. 10.1179/1476830515Y.0000000018

Source: PubMed

3
Předplatit