Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation: a prospective longitudinal study

Alexandre Demoule, Nicolas Molinari, Boris Jung, Hélène Prodanovic, Gerald Chanques, Stefan Matecki, Julien Mayaux, Thomas Similowski, Samir Jaber, Alexandre Demoule, Nicolas Molinari, Boris Jung, Hélène Prodanovic, Gerald Chanques, Stefan Matecki, Julien Mayaux, Thomas Similowski, Samir Jaber

Abstract

Background: In intensive care unit (ICU) patients, diaphragmatic dysfunction (DD) can occur on admission or during the subsequent stay. The respective incidence of these two phenomena has not been previously studied in humans. The study was designed to describe temporal trends in diaphragm function in mechanically ventilated (MV) patients.

Methods: Ancillary study of a prospective, 6-month, observational cohort study conducted in two ICUs. MV patients were studied within 24 h following intubation (day-1) and every 48-72 h thereafter. Diaphragm function was assessed by twitch tracheal pressure (Ptr,stim) in response to bilateral anterior magnetic phrenic nerve stimulation. Diaphragm dysfunction was defined as Ptr,stim < 11 cmH2O. Patients who received MV for at least 5 days were retained, and the first and the last measures were analysed.

Results: Forty-three patients were included. Overall, 79 % of patients developed DD at some point during their ICU stay: 23 (53 %) patients presented DD on initiation of mechanical ventilation, 14 (33 %) of whom had persistent DD, while diaphragm function improved in 9 (21 %). Among the remaining 20 (47 %) patients who did not present DD on initiation of MV, 11 (26 %) developed DD during the ICU stay, while 9 (21 %) did not. Mortality was higher in patients with DD either on initiation of mechanical ventilation or during the subsequent ICU stay than in those who never developed DD (35 vs. 0 %, p = 0.04). Duration of MV was higher in patients with DD on initiation of MV that subsequently persisted than in patients who never exhibited diaphragm dysfunction (18 vs. 5 days, p = 0.04). Factors associated with a change in Ptr,stim were: age [linear coefficient regression (Coeff.) -0.097, standard error (SD) 0.047, p = 0.046], PaO2/FiO2 ratio (Coeff. 0.014, SD 0.006, p = 0.0211) and the proportion of the time under MV with sedation (per 10 %, Coeff. -5.359, SD 2.451, p = 0.035).

Conclusions: DD is observed in a large majority of MV patients ≥5 days at some point of their ICU stay. Various patterns of DD are observed, including DD on initiation of mechanical ventilation and ICU-acquired DD. Trial registration clinicaltrials.gov Identifier # NCT00786526.

Keywords: Diaphragm Respiratory muscles function; Intensive care unit; Mechanical ventilation; Outcome; Phrenic nerve stimulation; Sepsis.

Figures

Fig. 1
Fig. 1
Study flow chart. ICU intensive care unit
Fig. 2
Fig. 2
Individual endotracheal tube pressure induced by bilateral phrenic nerve stimulation (Ptr,stim) on admission and during the subsequent intensive care unit stay in the four groups defined by the four patterns

References

    1. Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39:2627–2630. doi: 10.1097/CCM.0b013e3182266408.
    1. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2012;187:20–27. doi: 10.1164/rccm.201206-1117CP.
    1. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med. 2013;188:213–219. doi: 10.1164/rccm.201209-1668OC.
    1. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14:R127. doi: 10.1186/cc9094.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35:2007–2015. doi: 10.1097/01.ccm.0000281450.01881.d8.
    1. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care. 2010;16:19–25. doi: 10.1097/MCC.0b013e328334b166.
    1. Mills GH, Kyroussis D, Hamnegard CH, Polkey MI, Green M, Moxham J. Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach. Am J Respir Crit Care Med. 1996;154:1099–1105. doi: 10.1164/ajrccm.154.4.8887614.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. American Thoracic Society/European Respiratory Society ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624. doi: 10.1164/rccm.166.4.518.
    1. Hamnegard CH, Wragg SD, Mills GH, Kyroussis D, Polkey MI, Bake B, et al. Clinical assessment of diaphragm strength by cervical magnetic stimulation of the phrenic nerves. Thorax. 1996;51:1239–1242. doi: 10.1136/thx.51.12.1239.
    1. Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K, et al. Endotoxin triggers nuclear factor-kappaB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med. 2006;174:646–653. doi: 10.1164/rccm.200509-1511OC.
    1. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36:1701–1706. doi: 10.1097/CCM.0b013e318174db05.
    1. Khan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology. 2006;67:1421–1425. doi: 10.1212/01.wnl.0000239826.63523.8e.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Bernard N, Matecki S, Py G, Lopez S, Mercier J, Capdevila X. Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits. Intensive Care Med. 2003;29:111–118. doi: 10.1007/s00134-002-1547-4.
    1. Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, De Bock V, Dom R, Decramer M. Corticosteroid treatment and nutritional deprivation cause a different pattern of atrophy in rat diaphragm. J Appl Physiol. 1995;78:629–637.
    1. Krishnagopalan S, Kumar A, Parrillo JE. Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care. 2002;8:376–388. doi: 10.1097/00075198-200210000-00003.
    1. Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17:R120. doi: 10.1186/cc12792.
    1. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2015;42:853–861. doi: 10.1007/s00134-015-4125-2.
    1. Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29:1325–1331. doi: 10.1097/00003246-200107000-00005.
    1. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D et al. Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.
    1. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–649. doi: 10.1007/s00134-015-3687-3.
    1. Jung B, Nougaret S, Conseil M, Coisel Y, Futier E, Chanques G, et al. Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology. 2014;120:1182–1191. doi: 10.1097/ALN.0000000000000201.

Source: PubMed

3
Předplatit