Separate measures of ATP utilization and recovery in human skeletal muscle

M L Blei, K E Conley, M J Kushmerick, M L Blei, K E Conley, M J Kushmerick

Abstract

1. The chemical changes during contractile activity were separated from recovery metabolism in the forearm flexor musculature in normal human subjects using 31P nuclear magnetic resonance (NMR) spectroscopy. Percutaneous, supramaximal twitch stimulation of the median and ulnar nerves was used in combination with temporary ischaemia of the forearm to characterize the summed ATPase activity. The recovery following restoration of blood flow provided a measure of oxidative ATP synthesis activity. These processes were measured based on the dynamics of creatine phosphate (PCr) content. 2. Muscle oxygen stores were depleted using ischaemia without stimulation as indicated by PCr breakdown after 250 +/- 33 s (mean +/- S.D.; n = 5), which provided a measure of the basal metabolic rate (0.008 +/- 0.002 mM s-1, n = 5). 3. The PCr breakdown rate during twitch stimulation of the oxygen-depleted muscle was constant at 1 Hz at 0.15 +/- 0.03 mM PCr per second or per twitch (n = 8). A constant cost per twitch was found from 0.5 to 2 Hz stimulation (depletion of PCr per twitch = 0.15 mM per twitch). 4. No net anaerobic recovery of PCr was found during a 2 min post-stimulation ischaemia. 5. Upon restoration of blood flow, PCr recovery followed an exponential time course with a time constant of 63 +/- 14 s (n = 8). From these recovery rates, the capacity for oxidative phosphorylation was estimated to be 0.4 mM s-1. 6. This experimental approach defines a non-invasive and quantitative measure of human muscle ATPase rate and ATP synthetase rate.

References

    1. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384-8
    1. J Physiol. 1985 Sep;366:233-49
    1. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9458-62
    1. Magn Reson Med. 1984 Sep;1(3):307-15
    1. J Appl Physiol (1985). 1987 Jul;63(1):167-74
    1. Invest Radiol. 1987 Sep;22(9):741-6
    1. J Appl Physiol (1985). 1987 Dec;63(6):2360-5
    1. J Appl Physiol (1985). 1987 Dec;63(6):2366-74
    1. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1583-7
    1. Am J Physiol. 1989 Dec;257(6 Pt 1):C1149-57
    1. Am J Physiol. 1990 Mar;258(3 Pt 1):C377-89
    1. Magn Reson Med. 1990 Mar;13(3):490-7
    1. Magn Reson Med. 1990 Jun;14(3):562-7
    1. FEBS Lett. 1990 Sep 3;269(2):402-5
    1. Magn Reson Med. 1990 Sep;15(3):491-6
    1. Am J Physiol. 1991 Aug;261(2 Pt 1):C195-209
    1. NMR Biomed. 1991 Aug;4(4):173-81
    1. NMR Biomed. 1991 Dec;4(6):268-73
    1. J Gen Physiol. 1960 Sep;44:33-60
    1. Adv Enzymol Relat Subj Biochem. 1956;17:65-134
    1. J Neurophysiol. 1965 May;28:560-80
    1. Science. 1986 Aug 8;233(4764):640-5
    1. J Gen Physiol. 1967 Jul;50(6):Suppl:197-218
    1. Am J Physiol. 1971 Jul;221(1):182-8
    1. Science. 1971 Nov 12;174(4010):709-12
    1. Scand J Clin Lab Invest. 1974 Apr;33(2):109-20
    1. Scand J Clin Lab Invest. 1975 Jan;35(1):87-95
    1. Pflugers Arch. 1976 Dec 28;367(2):137-42
    1. Annu Rev Physiol. 1978;40:93-131
    1. J Biol Chem. 1979 Jul 25;254(14):6528-37
    1. Nature. 1980 Jan 10;283(5743):167-70
    1. Proc Natl Acad Sci U S A. 1980 May;77(5):2487-91
    1. J Gen Physiol. 1982 Jan;79(1):147-66
    1. Physiol Rev. 1983 Apr;63(2):387-436
    1. J Histochem Cytochem. 1984 Nov;32(11):1211-6
    1. Mol Biol Med. 1983 Jul;1(1):77-94
    1. Am J Physiol. 1985 May;248(5 Pt 1):C542-9
    1. Am J Physiol. 1985 Jun;248(6 Pt 2):H922-9
    1. Exerc Sport Sci Rev. 1985;13:33-74
    1. J Appl Physiol (1985). 1985 Aug;59(2):320-7
    1. J Exp Biol. 1985 Mar;115:179-89

Source: PubMed

3
Předplatit