Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder-A Randomized, Controlled 12-Month Trial

James B Adams, Tapan Audhya, Elizabeth Geis, Eva Gehn, Valeria Fimbres, Elena L Pollard, Jessica Mitchell, Julie Ingram, Robert Hellmers, Dana Laake, Julie S Matthews, Kefeng Li, Jane C Naviaux, Robert K Naviaux, Rebecca L Adams, Devon M Coleman, David W Quig, James B Adams, Tapan Audhya, Elizabeth Geis, Eva Gehn, Valeria Fimbres, Elena L Pollard, Jessica Mitchell, Julie Ingram, Robert Hellmers, Dana Laake, Julie S Matthews, Kefeng Li, Jane C Naviaux, Robert K Naviaux, Rebecca L Adams, Devon M Coleman, David W Quig

Abstract

This study involved a randomized, controlled, single-blind 12-month treatment study of a comprehensive nutritional and dietary intervention. Participants were 67 children and adults with autism spectrum disorder (ASD) ages 3-58 years from Arizona and 50 non-sibling neurotypical controls of similar age and gender. Treatment began with a special vitamin/mineral supplement, and additional treatments were added sequentially, including essential fatty acids, Epsom salt baths, carnitine, digestive enzymes, and a healthy gluten-free, casein-free, soy-free (HGCSF) diet. There was a significant improvement in nonverbal intellectual ability in the treatment group compared to the non-treatment group (+6.7 ± 11 IQ points vs. -0.6 ± 11 IQ points, p = 0.009) based on a blinded clinical assessment. Based on semi-blinded assessment, the treatment group, compared to the non-treatment group, had significantly greater improvement in autism symptoms and developmental age. The treatment group had significantly greater increases in EPA, DHA, carnitine, and vitamins A, B2, B5, B6, B12, folic acid, and Coenzyme Q10. The positive results of this study suggest that a comprehensive nutritional and dietary intervention is effective at improving nutritional status, non-verbal IQ, autism symptoms, and other symptoms in most individuals with ASD. Parents reported that the vitamin/mineral supplements, essential fatty acids, and HGCSF diet were the most beneficial.

Keywords: Epsom salts; autism; autism spectrum disorder; carnitine; digestive enzymes; essential fatty acids; minerals; vitamins.

Conflict of interest statement

J.B.A. is the president of the Autism Nutrition Research Center (ANRC), a non-profit which provides information to autism families and which produces an improved version of the vitamin/mineral supplement used in this study. He serves as an unpaid volunteer, and does not receive any royalties from the sale of the vitamin/mineral supplement. T.A. consults for Health Diagnostics, a commercial testing lab. D.W.Q. works at Doctor’s Data, a commercial testing lab. The other authors do not have any competing interests.

Figures

Figure 1
Figure 1
Study Flowchart.
Figure 2
Figure 2
Summary of significant changes in major evaluations, for both the treatment and non-treatment groups. For some scales an increase is an improvement, and for some the opposite is true; so, here we plot them with improvement being in the same direction on the y-axis. Note that the % change for the PDD-BI composite is based on the average change in each of the composite subscales. Error bars represent standard deviations.
Figure 3
Figure 3
Reynolds Intellectual Assessment Scales (RIAS) nonverbal IQ score at the beginning and end of the study, for the treatment and non-treatment groups. RIAS scores are normalized so that 100 is an “average” IQ; thus, the average of the ASD groups is substantially lower than the average for the general population. Error bars represent standard deviations.
Figure 4
Figure 4
CARS-2 scores at beginning and end of the study. The scale goes from 15 to 60, with scores of approximately 27 and above being the cut-off for ASD. Error bars represent standard deviations.
Figure 5
Figure 5
SAS scores (as rated by the professional evaluator) at beginning and end of the study. The scale goes from zero (no symptoms) to 10 (severe autism). Error bars represent standard deviations.
Figure 6
Figure 6
Change in the developmental age for the Vineland domains, and the average of the three domains. “T” refers to the treatment group and “N” refers to the non-treatment group. Note that the physical age of the participants at the start of the study was 10.8 and 12.3 years for the treatment and non-treatment groups, respectively. So, their developmental age was far below their physical age, even after a significant increase for the treatment group. Error bars represent standard deviations.
Figure 7
Figure 7
Vineland Subscale Changes.
Figure 8
Figure 8
Change in PDD-BI subscale scores. Note that the first seven subscales are for maladaptive behaviors, so a decrease is beneficial. The last three subscales are for adaptive behaviors, so an increase is beneficial. Error bars represent standard deviations.
Figure 9
Figure 9
The scores for the four ATEC subscales at the beginning and end of the study. “T” refers to the treatment group and “N” refers to the non-treatment group. Higher scores represent greater severity. Error bars represent standard deviations.
Figure 10
Figure 10
ABC subscales at beginning and end of the study. “T” refers to the treatment group and “N” refers to the non-treatment group. Higher scores represent greater severity. Error bars represent standard deviations.
Figure 11
Figure 11
Total SRS scores at the beginning and end of the study. Higher scores indicate greater severity, and 54 is the cut-off for an ASD diagnosis. Error bars represent standard deviations.
Figure 12
Figure 12
SSP scores at the beginning and end of the study. Note that higher scores represent fewer sensory problems. Error bars represent standard deviations.
Figure 13
Figure 13
PGI-R2 scores during the study. The scale goes from −3 (much worse) to 0 (no change) to 1 (slightly better), 2 (better), 3 (much better). Error bars represent standard deviations.
Figure 14
Figure 14
Effectiveness of each treatment as rated by parents. This is rated on a scale of −3 (much worse) to 0 (no effect) to 1 (slightly better) to 2 (better) to 3 (much better). Error bars represent standard deviations.
Figure 15
Figure 15
Percentage of participants who plan to continue each treatment.

References

    1. Li Y.J., Ou J.J., Li Y.M., Xiang D.X. Dietary Supplement for Core Symptoms of Autism Spectrum Disorder: Where Are We Now and Where Should We Go? Front. Psychiatry. 2017;8:155. doi: 10.3389/fpsyt.2017.00155.
    1. Cekic H., Sanlier N. Current nutritional approaches in managing autism spectrum disorder: A review. Nutr. Neurosci. 2017:1–11. doi: 10.1080/1028415X.2017.1358481.
    1. Gogou M., Kolios G. The effect of dietary supplements on clinical aspects of autism spectrum disorder: A systematic review of the literature. Brain Dev. 2017;39:656–664. doi: 10.1016/j.braindev.2017.03.029.
    1. James S.J., Cutler P., Melnyk S., Jernigan S., Janak L., Gaylor D.W., Neubrander J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 2004;80:1611–1617. doi: 10.1093/ajcn/80.6.1611.
    1. James S.J., Melnyk S., Jernigan S., Cleves M.A., Halsted C.H., Wong D.H., Cutler P., Bock K., Boris M., Bradstreet J.J., et al. Metabolic endophyenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. Neuropsychiatr. Genet. 2006;141:947–956. doi: 10.1002/ajmg.b.30366.
    1. James S.J., Melnyk S., Fuchs G., Reid T., Jernigan S., Pavliv O., Hubanks A., Gaylor D.W. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr. 2009;89:425–430. doi: 10.3945/ajcn.2008.26615.
    1. Chauhan A., Chauhan V., Brown W.T., Cohen I.L. Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—The antioxidant proteins. Life Sci. 2004;75:2539–2549. doi: 10.1016/j.lfs.2004.04.038.
    1. Chauhan A., Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13:171–181. doi: 10.1016/j.pathophys.2006.05.007.
    1. Al-Mosalem O.A., El-Ansary A., Al-Ayadhi L. Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin. Biochem. 2009;42:949–957. doi: 10.1016/j.clinbiochem.2009.04.006.
    1. Al-Gadani Y., El-Ansary A., Attas O., Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin. Biochem. 2009;42:1032–1040. doi: 10.1016/j.clinbiochem.2009.03.011.
    1. Frustaci A., Neri M., Cesario A., Adams J.B., Domenici E., Bernardina B.D., Bonassi S. Oxidative stress biomarkers in autism: Systematic review and meta-analyses. Free Radic. Biol. Med. 2012;52:2128–2141. doi: 10.1016/j.freeradbiomed.2012.03.011.
    1. El-Ansary A., Bjørklund G., Chirumbolo S., Alnakhli O.M. Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder. Metab. Brain Dis. 2017;32:1209–1221. doi: 10.1007/s11011-017-0029-x.
    1. Nardone S., Sams D.S., Zito A., Reuveni E., Elliot E. Dysregulation of Cortical Neuron DNA Methylation Profile in Autism Spectrum Disorder. Cereb. Cortex. 2017;27:5739–5754. doi: 10.1093/cercor/bhx250.
    1. Adams J.B., Audhya T., McDonough-Means S., Rubin R.A., Quig D., Geis E., Gehn E., Loresto M., Mitchell J., Atwood S., et al. Nutritional and Metabolic Status of Children with Autism vs. Neurotypical Children, and the Association with Autism Severity. Nutr. Metab. 2011;8:34. doi: 10.1186/1743-7075-8-34.
    1. Adams J.B., Audhya T., McDonough-Means S., Rubin R.A., Quig D., Geis E., Gehn E., Loresto M., Mitchell J., Atwood S., et al. Effect of a Vitamin/Mineral Supplement on Children and adults with Autism. BMC Pediatr. 2011;11:111. doi: 10.1186/1471-2431-11-111.
    1. Van der Kemp W.J., Klomp D.W., Kahn R.S., Luijten P.R., Hulshoff Pol H.E. A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophr. Res. 2012;141:153–161. doi: 10.1016/j.schres.2012.08.014.
    1. Hawkey E., Nigg J.T. Omega-3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials. Clin. Psychol. Rev. 2014;34:496–505. doi: 10.1016/j.cpr.2014.05.005.
    1. Lin P.Y., Huang S.Y., Su K.P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry. 2010;68:140–147. doi: 10.1016/j.biopsych.2010.03.018.
    1. McNamara R.K., Welge J.A. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder. Bipolar Disord. 2016;18:300–306. doi: 10.1111/bdi.12386.
    1. Lin P.Y., Chiu C.C., Huang S.Y., Su K.P. A meta-analytic review of polyunsaturated fatty acid compositions in dementia. J. Clin. Psychiatry. 2012;73:1245–1254. doi: 10.4088/JCP.11r07546.
    1. Chen A.T., Chibnall J.T., Nasrallah H.A. A meta-analysis of placebo-controlled trials of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Ann. Clin. Psychiatry. 2015;27:289–296.
    1. Mocking R.J., Harmsen I., Assies J., Koeter M.W., Ruhé H.G., Schene A.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 2016;6:e756. doi: 10.1038/tp.2016.29.
    1. Sarris J., Mischoulon D., Schweitzer I. Omega-3 for bipolar disorder: Meta-analyses of use in mania and bipolar depression. J. Clin. Psychiatry. 2012;73:81–86. doi: 10.4088/JCP.10r06710.
    1. Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J. Clin. Med. Res. 2017;9:1–9. doi: 10.14740/jocmr2815w.
    1. De Felice C., Signorini C., Durand T., Ciccoli L., Leoncini S., D’Esposito M., Filosa S., Oger C., Guy A., Bultel-Poncé V., et al. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012;7:447–458. doi: 10.1007/s12263-012-0285-7.
    1. Shoda R., Matsueda K., Yamato S., Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am. J. Clin. Nutr. 1996;63:741–745. doi: 10.1093/ajcn/63.5.741.
    1. Belluzzi A., Brignola C., Campieri M., Pera A., Boschi S., Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N. Engl. J. Med. 1996;334:1557–1560. doi: 10.1056/NEJM199606133342401.
    1. Buie T., Campbell D.B., Fuchs G.J., 3rd, Furuta G.T., Levy J., Vandewater J., Whitaker A.H., Atkins D., Bauman M.L., Beaudet A.L., et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report. Pediatrics. 2010;125(Suppl. 1):S1–S18. doi: 10.1542/peds.2009-1878C.
    1. Mazahery H., Stonehouse W., Delshad M., Kruger M.C., Conlon C.A., Beck K.L., von Hurst P.R. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients. 2017;9:155. doi: 10.3390/nu9020155.
    1. Amminger G.P., Berger G.E., Schäfer M.R., Klier C., Friedrich M.H., Feucht M. Omega-3 Fatty Acids Supplementation in Children with Autism: A Double-blind Randomized, Placebo-controlled Pilot Study. Biol. Psychiatry. 2007;61:551–553. doi: 10.1016/j.biopsych.2006.05.007.
    1. Bent S., Bertoglio K., Ashwood P., Bostrom A., Hendren R.L. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J. Autism Dev. Disord. 2011;41:545–554. doi: 10.1007/s10803-010-1078-8.
    1. Bent S., Hendren R.L., Zandi T., Law K., Choi J.E., Widjaja F., Kalb L., Nestle J., Law P. Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. J. Am. Acad. Child Adolesc. Psychiatry. 2014;53:658–666. doi: 10.1016/j.jaac.2014.01.018.
    1. Yui K., Koshiba M., Nakamura S., Kobayashi Y. Effects of Large Doses of Arachidonic Acid Added to Docosahexaenoic Acid on Social Impairment in Individuals With Autism Spectrum Disorders: A Double-Blind, Placebo-Controlled, Randomized Trial. J. Clin. Psychopharmacol. 2012;32:200–206. doi: 10.1097/JCP.0b013e3182485791.
    1. Katan M.B., Deslypere J.P., van Birgelen A.P., Penders M., Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. J. Lipid Res. 1997;38:2012–2022.
    1. Mankad D., Dupuis A., Smile S., Roberts W., Brian J., Lui T., Genore L., Zaghloul D., Iaboni A., Marcon P.M.A., et al. A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Mol. Autism. 2015;6:18. doi: 10.1186/s13229-015-0010-7.
    1. Voigt R.G., Mellon M.W., Katusic S.K., Weaver A.L., Matern D., Mellon B., Jensen C.L., Barbaresi W.J. Dietary docosahexaenoic acid supplementation in children with autism. J. Pediatr. Gastroenterol. Nutr. 2014;58:715–722. doi: 10.1097/MPG.0000000000000260.
    1. Chang R. Chemistry. 9th ed. McGraw-Hill; New York, NY, USA: 2007. p. 52.
    1. Waring R.H., Ngong J.M., Klovsra L., Green S. Sharp, H. Biochemical Parameters in Autistic Children. Dev. Brain Dysfunct. 1997;10:40–43.
    1. Geier D.A., Kern J.K., Garver C.R., Adams J.B., Audhya T., Geier M.R. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem. Res. 2009;34:386–393. doi: 10.1007/s11064-008-9782-x. Erratum in Neurochem. Res.2009, 34, 394.
    1. O’Reilly B.A., Warning R.H. Enzyme and Sulphur Oxidation Deficiencies in Autistic Children with Known Food/Chemical Sensitivities. J. Orthomol. Med. 1993;8:198–200.
    1. Alberti A., Pirrone P., Elia M., Waring R.H., Romano C. Sulphation deficit in “low-functioning” autistic children: A pilot study. Biol. Psychiatry. 1999;46:420–424. doi: 10.1016/S0006-3223(98)00337-0.
    1. Horvath K., Perman J.A. Autistic disorder and gastrointestinal disease. Curr. Opin. Pediatr. 2002;14:583–587. doi: 10.1097/00008480-200210000-00004.
    1. Waring R.H., Klovrsa L.V. Sulfur Metabolism in Autism. J. Nutr. Environ. Med. 2000;10:25–32. doi: 10.1080/13590840050000861.
    1. Weissman J.R., Kelley R.I., Bauman M.L., Cohen B.H., Murray K.F., Mitchell R.L., Kern R.L., Natowicz M.R. Mitochondrial disease in autism spectrum disorder patients: A cohort analysis. PLoS ONE. 2008;3:e3815. doi: 10.1371/journal.pone.0003815.
    1. Oliveira G., Ataíde A., Marques C., Miguel T.S., Coutinho A.M., Mota-Vieira L., Goncalves E., Lopes N.M., Rodrigues V., Carmona da Mota H., et al. Epidemiology of autism spectrum disorder in Portugal: Prevalence, clinical characterization, and medical conditions. Dev. Med. Child Neurol. 2007;49:726–733. doi: 10.1111/j.1469-8749.2007.00726.x.
    1. Oliveira G., Diogo L., Grazina M., Garcia P., Ataíde A., Marques C., Miguel T., Borges L., Vicente A.M., Oliveira C.R. Mitochondrial dysfunction in autism spectrum disorders: A population-based study. Dev. Med. Child Neurol. 2005;47:185–189. doi: 10.1017/S0012162205000332.
    1. Correia C., Coutinho A.M., Diogo L., Grazina M., Marques C., Miguel T., Ataíde A., Almeida J., Borges L., Oliveira C., et al. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: No association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J. Autism Dev. Disord. 2006;36:1137–1140. doi: 10.1007/s10803-006-0138-6.
    1. Rossignol D.A., Frye R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry. 2012;17:290–314. doi: 10.1038/mp.2010.136.
    1. Filipek P.A., Juranek J., Nguyen M.T., Cummings C., Gargus J.J. Relative carnitine deficiency in autism. J. Autism Dev. Disord. 2004;34:615–623. doi: 10.1007/s10803-004-5283-1.
    1. Geier D.A., Kern J.K., Davis G., King P.G., Adams J.B., Young J.L., Geier M.R. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med. Sci. Monit. 2011;17:PI15–PI23. doi: 10.12659/MSM.881792.
    1. Fahmy S.F., El-hamamsy M.H., Zaki O.K., Badary O.A. L-Carnitine supplementation improves the behavioral symptoms in autistic children. Res. Autism Spectr. Disord. 2013;7:159–166. doi: 10.1016/j.rasd.2012.07.006.
    1. Buie T., Fuchs G.J., 3rd, Furuta G.T., Kooros K., Levy J., Lewis J.D., Wershil B.K., Winter H. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics. 2010;125(Suppl. 1):S19–S29. doi: 10.1542/peds.2009-1878D.
    1. Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal Flora and Gastrointestinal Status in Children with Autism—Comparisons to Neurotypical Children and Correlation with Autism Severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22.
    1. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7.
    1. Kushak R.I., Lauwers G.Y., Winter H.S., Buie T.M. Intestinal disaccharidase activity in patients with autism: Effect of age, gender, and intestinal inflammation. Autism. 2011;15:285–294. doi: 10.1177/1362361310369142.
    1. Brudnak M.A., Rimland B., Kerry R.E., Dailey M., Taylor R., Stayton B., Waickman F., Waickman M., Pangborn J., Buchholz I. Enzyme-based therapy for autism spectrum disorders—Is it worth another look? Med. Hypotheses. 2002;58:422–428. doi: 10.1054/mehy.2001.1513.
    1. Munasinghe S.A., Oliff C., Finn J., Wray J.A. Digestive enzyme supplementation for autism spectrum disorders: A double-blind randomized controlled trial. J. Autism Dev. Disord. 2010;40:1131–1138. doi: 10.1007/s10803-010-0974-2.
    1. Saad K., Eltayeb A.A., Mohamad I.L., Al-Atram A.A., Elserogy Y., Bjørklund G., El-Houfey A.A., Nicholson B. A Randomized, Placebo-controlled Trial of Digestive Enzymes in Children with Autism Spectrum Disorders. Clin. Psychopharmacol. Neurosci. 2015;13:188–193. doi: 10.9758/cpn.2015.13.2.188.
    1. Meguid N.A., Anwar M., Bjørklund G., Hashish A., Chirumbolo S., Hemimi M., Sultan E. Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab. Brain Dis. 2017;32:607–615. doi: 10.1007/s11011-016-9948-1.
    1. Bandini L.G., Anderson S.E., Curtin C., Cermak S., Evans E.W., Scampini R., Maslin M., Must A. Food Selectivity in Children with Autism Spectrum Disorders and Typically Developing Children. J. Pediatr. 2010;157:259–264. doi: 10.1016/j.jpeds.2010.02.013.
    1. Vojdani A., O’Bryan T., Green J.A., Mccandless J., Woeller K.N., Vojdani E., Nourian A.A., Cooper E.L. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci. 2004;7:151–161. doi: 10.1080/10284150400004155.
    1. Jyonouchi H., Geng L., Ruby A., Zimmerman-Bier B. Dysregulated innate immune responses in young children with autism spectrum disorders: Their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology. 2005;51:77–85. doi: 10.1159/000084164.
    1. Jyonouchi H., Geng L., Ruby A., Reddy C., Zimmerman-Bier B. Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders. J. Pediatr. 2005;146:605–610. doi: 10.1016/j.jpeds.2005.01.027.
    1. Jyonouchi H., Sun S., Itokazu N. Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology. 2002;46:76–84. doi: 10.1159/000065416.
    1. De Magistris L., Picardi A., Siniscalco D., Riccio M.P., Sapone A., Cariello R., Abbadessa S., Medici N., Lammers K.M., Schiraldi C., et al. Antibodies against Food Antigens in Patients with Autistic Spectrum Disorders. BioMed Res. Int. 2013;2013:1–11. doi: 10.1155/2013/729349.
    1. Iovene M.R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., Marotta R., Schiraldi C., Siniscalco D., Serra N., et al. Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia. 2016;182:349–363. doi: 10.1007/s11046-016-0068-6.
    1. Cade R., Privette M., Fregly M., Rowland N., Sun Z., Zele V., Wagemaker H., Edelstein C. Autism and Schizophrenia: Intestinal Disorders. Nutr. Neurosci. 2000;3:57–72. doi: 10.1080/1028415X.2000.11747303.
    1. Lucarelli S., Frediani T., Zingoni A.M., Ferruzzi F., Giardini O., Quintieri F., Barbato M., D’eufemia P., Cardi E. Food allergy and infantile autism. Panminerva Med. 1995;37:137–141.
    1. Knivsberg A.M., Reichelt K.L., Hoien T., Nodland M. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr. Neurosci. 2002;5:251–261. doi: 10.1080/10284150290028945.
    1. Elder J.H., Shankar M., Shuster J., Theriaque D., Burns S., Sherrill L. The gluten-free, casein-free diet in autism: Results of a preliminary double blind clinical trial. J. Autism Dev. Disord. 2006;36:413–420. doi: 10.1007/s10803-006-0079-0.
    1. Whiteley P., Haracopos D., Knivsberg A.M., Reichelt K.L., Parlar S., Jacobsen J., Seim A., Pedersen L., Schondel M., Shattock P. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 2010;13:87–100. doi: 10.1179/147683010X12611460763922.
    1. Adams J.B. Nutritional, Dietary, and Medical Treatments for Autism—Based on over 150 published research studies. Autism Res. Inst. Publ. 2013;41:1–53.
    1. Naviaux J.C., Wang L., Li K., Bright A.T., Alaynick W.A., Williams K.R., Powell S.B., Naviaux R.K. Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model. Mol. Autism. 2015;6:1. doi: 10.1186/2040-2392-6-1.
    1. Dyerberg J., Madsen P., Møller J.M., Aardestrup I., Schmidt E.B. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leuk. Essent. Fat. Acids. 2010;83:137–141. doi: 10.1016/j.plefa.2010.06.007.
    1. Saad K., Abdel-Rahman A.A., Elserogy Y.M., Al-Atram A.A., Cannell J.J., Bjørklund G., Abdel-Reheim M.K., Othman H.A., El-Houfey A.A., Abd El-Aziz N.H., et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci. 2016;19:346–351. doi: 10.1179/1476830515Y.0000000019.
    1. Saad K., Abdel-Rahman A.A., Elserogy Y.M., Al-Atram A.A., El-Houfey A.A., Othman H.A., Bjørklund G., Jia F., Urbina M.A., Abo-Elela M.G.M., et al. Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatr. 2016;59:20–29. doi: 10.1111/jcpp.12652.

Source: PubMed

3
Předplatit