Mesothelioma in the United States: a Surveillance, Epidemiology, and End Results (SEER)-Medicare investigation of treatment patterns and overall survival

Jennifer L Beebe-Dimmer, Jon P Fryzek, Cecilia L Yee, Tapashi B Dalvi, David H Garabrant, Ann G Schwartz, Shirish Gadgeel, Jennifer L Beebe-Dimmer, Jon P Fryzek, Cecilia L Yee, Tapashi B Dalvi, David H Garabrant, Ann G Schwartz, Shirish Gadgeel

Abstract

Introduction: Mesothelioma is a rare malignancy typically associated with exposure to asbestos and poor survival. The purpose of this investigation was to describe mesothelioma patient characteristics, treatment patterns, and overall survival (OS) utilizing the National Cancer Institute's Surveillance, Epidemiology, and End Results-Medicare database.

Materials and methods: Patients in this study were diagnosed with malignant mesothelioma of the pleura or peritoneum between January 1, 2005 and December 31, 2009 with follow-up for survival through December 31, 2010. We examined both patient and tumor characteristics at time of diagnosis and subsequent treatment patterns (surgery, radiation, and chemotherapy). Among patients treated with chemotherapy, we determined chemotherapy regimen and OS by line of therapy.

Results: Of the 1,625 patients considered eligible for this investigation, the median age at diagnosis was 78 years. Nearly a third of patients (30%) had surgery as part of their treatment and 45% were given chemotherapy. The median OS was 8 months (range 1-69 months). Among chemotherapy patients, the most commonly (67%) prescribed regimen for first-line therapy was cisplatin or carboplatin (Ca/Ci) combined with pemetrexed (Pe). Among those prescribed Ca/Ci + Pe as first-line therapy, retreatment with Ca/Ci + Pe (28%) or treatment with gemcitabine (30%) were the most common second-line therapies. Median OS for those receiving first-line chemotherapy was 7 months, and among those receiving second-line therapy median OS was extended an additional 5 months.

Conclusion: Irrespective of surgical resection, mesothelioma patients receiving some form of chemotherapy survived longer than patients who did not, with an additional survival benefit among those patients receiving multimodal treatment.

Keywords: chemotherapy; epidemiology; mesothelioma; morbidity; mortality; outcomes; survival.

Conflict of interest statement

JPF was employed by AstraZeneca. JPF, CY, AS, DHG, and JBD received funding to support this work from AstraZeneca Inc, Gaithersburg, MD 20878. TD is currently employed by AstraZeneca. The authors report no other conflicts of interest in this work.

References

    1. Ray M, Kindler HL. Malignant pleural mesothelioma: an update on biomarkers and treatment. Chest. 2009;136(3):888–896.
    1. Teta MJ, Mink PJ, Lau E, Sceurman BK, Foster ED. US mesothelioma patterns 1973–2002: indicators of change and insights into background rates. Eur J Cancer Prev. 2008;17(6):525–534.
    1. National Cancer Institute Surveillance Epidemiology, and End Results SEER*Stat software. [Accessed June 16, 2016]. Available from: .
    1. Moolgavkar SH, Meza R, Turim J. Pleural and peritoneal mesotheliomas in SEER: age effects and temporal trends, 1973–2005. Cancer Causes Control. 2009;20(6):935–944.
    1. Rusch VW. A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest Group. Lung Cancer. 1996;14(1):1–12.
    1. Van Schil P. Malignant pleural mesothelioma: staging systems. Lung Cancer. 2005;49(Suppl 1):S45–S48.
    1. Curran D, Sahmoud T, Therasse P, van Meerbeeck J, Postmus PE, Giaccone G. Prognostic factors in patients with pleural mesothelioma: the European Organization for Research and Treatment of Cancer experience. J Clin Oncol. 1998;16(1):145–152.
    1. Potosky AL, Riley GF, Lubitz JD, Mentnech RM, Kessler LG. Potential for cancer related health services research using a linked Medicare-tumor registry database. Med Care. 1993;31(8):732–748.
    1. National Comprehensive Cancer Network NCCN guidelines for treatment of cancer by site: malignant pleural mesothelioma. 2015. [Accessed June 16, 2016]. Available from: .
    1. Jänne PA. First-line chemotherapy for malignant pleural mesothelioma. In: Pass HI, Vogelzang NJ, Carbone M, editors. Malignant Mesothelioma: Advances in Pathogenesis, Diagnosis, and Translational Therapies. New York: Springer; 2005. pp. 593–598.
    1. Milano MT, Zhang H. Malignant pleural mesothelioma: a population-based study of survival. J Thorac Oncol. 2010;5(11):1841–1848.
    1. Meyerhoff RR, Yang CF, Speicher PJ, et al. Impact of mesothelioma histologic subtype on outcomes in the Surveillance, Epidemiology, and End Results database. J Surg Res. 2015;196(1):23–32.
    1. Taioli E, Wolf AS, Moline JM, Camacho-Rivera M, Flores RM. Frequency of surgery in black patients with malignant pleural mesothelioma. Dis Markers. 2015;2015:282145.
    1. Blomberg C, Nilsson J, Holgersson G, et al. Randomized trials of systemic medically-treated malignant mesothelioma: a systematic review. Anticancer Res. 2015;35(5):2493–2501.
    1. Krug LM, Wozniak AJ, Kindler HL, et al. Randomized phase II trial of pemetrexed/cisplatin with or without CBP501 in patients with advanced malignant pleural mesothelioma. Lung Cancer. 2014;85(3):429–434.
    1. Kindler HL, Karrison TG, Gandara DR, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma. J Clin Oncol. 2012;30(20):2509–2515.
    1. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–2644.
    1. Millenson MM, Lee J, Hanna NH, et al. Pemetrexed (Pem) plus gemcitabine (Gem) or carboplatin (Carbo) in patients (pts) with advanced malignant mesothelioma (MPM): a randomized phase II trial, E1B03. J Clin Oncol. 2010;28(15 Suppl):e18053.
    1. Szlosarek PW, Steele JP, Nolan L, et al. Randomized trial of arginine deprivation with pegylated arginine deiminase in patients with malignant pleural mesothelioma. J Clin Oncol. 2014;32(5 Suppl):7507.
    1. Samson MK, Wasser LP, Borden EC, et al. Randomized comparison of cyclophosphamide, imidazole carboxamide, and adriamycin versus cyclophosphamide and adriamycin in patients with advanced stage malignant mesothelioma: a Sarcoma Intergroup study. J Clin Oncol. 1987;5(1):86–91.
    1. Buikhuisen WA, Burgers JA, Vincent AD, et al. Thalidomide versus active supportive care for maintenance in patients with malignant mesothelioma after first-line chemotherapy (NVALT 5): an open-label, multicentre, randomised phase 3 study. Lancet Oncol. 2013;14(6):543–551.
    1. Jassem J, Ramlau R, Santoro A, et al. Phase III trial of pemetrexed plus best supportive care compared with best supportive care in previously treated patients with advanced malignant pleural mesothelioma. J Clin Oncol. 2008;26(10):1698–1704.
    1. Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed (MAPS): a randomized, controlled, open-label, phase 3 trial. Lancet. 2016;387(10026):1405–1414.
    1. Healthcaredeliverycancergov/[database on the Internet] Rockville, MD: National National Cancer Institute, Division of Cancer Control and Population Sciences; [Accessed June 16, 2016]. Available from: .

Source: PubMed

3
Předplatit