Anti-CD25 radioimmunotherapy with BEAM autologous hematopoietic cell transplantation conditioning in Hodgkin lymphoma

Alex F Herrera, Joycelynne Palmer, Vikram Adhikarla, Dave Yamauchi, Erasmus K Poku, James Bading, Paul Yazaki, Savita Dandapani, Matthew Mei, Robert Chen, Thai Cao, Nicole Karras, Pamela McTague, Auayporn Nademanee, Leslie Popplewell, Firoozeh Sahebi, John E Shively, Jennifer Simpson, D Lynne Smith, Joo Song, Ricardo Spielberger, Ni-Chun Tsai, Sandra H Thomas, Stephen J Forman, David Colcher, Anna M Wu, Jeffrey Wong, Eileen Smith, Alex F Herrera, Joycelynne Palmer, Vikram Adhikarla, Dave Yamauchi, Erasmus K Poku, James Bading, Paul Yazaki, Savita Dandapani, Matthew Mei, Robert Chen, Thai Cao, Nicole Karras, Pamela McTague, Auayporn Nademanee, Leslie Popplewell, Firoozeh Sahebi, John E Shively, Jennifer Simpson, D Lynne Smith, Joo Song, Ricardo Spielberger, Ni-Chun Tsai, Sandra H Thomas, Stephen J Forman, David Colcher, Anna M Wu, Jeffrey Wong, Eileen Smith

Abstract

High-risk relapsed or refractory (R/R) classical Hodgkin lymphoma (HL) is associated with poor outcomes after conventional salvage therapy and autologous hematopoietic cell transplantation (AHCT). Post-AHCT consolidation with brentuximab vedotin (BV) improves progression-free survival (PFS), but with increasing use of BV early in the treatment course, the utility of consolidation is unclear. CD25 is often expressed on Reed-Sternberg cells and in the tumor microenvironment in HL, and we hypothesized that the addition of 90Y-antiCD25 (aTac) to carmustine, etoposide, cytarabine, melphalan (BEAM) AHCT would be safe and result in a transplantation platform that is agnostic to prior HL-directed therapy. Twenty-five patients with high-risk R/R HL were enrolled in this phase 1 dose-escalation trial of aTac-BEAM. Following an imaging dose of 111In-antiCD25, 2 patients had altered biodistribution, and a third developed an unrelated catheter-associated bacteremia; therefore, 22 patients ultimately received therapeutic 90Y-aTac-BEAM AHCT. No dose-limiting toxicities were observed, and 0.6 mCi/kg was deemed the recommended phase 2 dose, the dose at which the heart wall would not receive >2500 cGy. Toxicities and time to engraftment were similar to those observed with standard AHCT, though 95% of patients developed stomatitis (all grade 1-2 per Bearman toxicity scale). Seven relapses (32%) were observed, most commonly in patients with ≥3 risk factors. The estimated 5-year PFS and overall survival probabilities among 22 evaluable patients were 68% and 95%, respectively, and non-relapse mortality was 0%. aTac-BEAM AHCT was tolerable in patients with high-risk R/R HL, and we are further evaluating the efficacy of this approach in a phase 2 trial. This trial was registered at www.clinicaltrials.gov as #NCT01476839.

© 2021 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
Clinical trial schema and consort diagram.
Figure 2.
Figure 2.
PK of 111In-basiliximab/DOTA in all patients. (A) Clearance of 111In-basiliximab/DOTA from blood over time. (B) Clearance of 111In-basiliximab/DOTA from serum over time. (C) Clearance of 111In-basiliximab/DOTA from urine over time.
Figure 3.
Figure 3.
Biodistribution of 111In-basiliximab/DOTA at 144 hours in UPN-1 (left) and 18F-FDG-PET (right).

References

    1. Linch DC, Winfield D, Goldstone AH, et al. . Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet. 1993;341(8852):1051-1054.
    1. Moskowitz CH, Walewski J, Nademanee A, et al. . Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood. 2018;132(25):2639-2642.
    1. Schmitz N, Pfistner B, Sextro M, et al. ; Lymphoma Working Party of the European Group for Blood and Marrow Transplantation . Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet. 2002;359(9323):2065-2071.
    1. Moskowitz CH, Matasar MJ, Zelenetz AD, et al. . Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665-1670.
    1. Santoro A, Magagnoli M, Spina M, et al. . Ifosfamide, gemcitabine, and vinorelbine: a new induction regimen for refractory and relapsed Hodgkin’s lymphoma. Haematologica. 2007;92(1):35-41.
    1. Santoro A, Mazza R, Pulsoni A, et al. . Bendamustine in combination with gemcitabine and vinorelbine is an effective regimen as induction chemotherapy before autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma: final results of a multicenter phase II study. J Clin Oncol. 2016;34(27):3293-3299.
    1. Garcia-Sanz R, Sureda A, de la Cruz F, et al. . Brentuximab vedotin and ESHAP is highly effective as second-line therapy for Hodgkin lymphoma patients (long-term results of a trial by the Spanish GELTAMO Group). Ann Oncol. 2019;30(4):612-620.
    1. Herrera AF, Moskowitz AJ, Bartlett NL, et al. . Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018;131(11):1183-1194.
    1. Herrera AF, Palmer J, Martin P, et al. . Autologous stem-cell transplantation after second-line brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Ann Oncol. 2018;29(3):724-730.
    1. Kersten MJ, Driessen J, Zijlstra JM, et al. . Combining brentuximab vedotin with dexamethasone, high-dose cytarabine and cisplatin as salvage treatment in relapsed or refractory Hodgkin lymphoma: the phase II HOVON/LLPC Transplant BRaVE study. Haematologica. 2021;106(4):1129-1137.
    1. LaCasce AS, Bociek RG, Sawas A, et al. . Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood. 2018;132(1):40-48.
    1. Moskowitz AJ, Schöder H, Yahalom J, et al. . PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: a non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol. 2015;16(3):284-292.
    1. Armand P, Chen YB, Redd RA, et al. . PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation. Blood. 2019;134(1):22-29.
    1. Abramson JS, Arnason JE, LaCasce AS, et al. . Brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine for nonbulky limited-stage classical Hodgkin lymphoma. Blood. 2019;134(7):606-613.
    1. Allen PB, Savas H, Evens AM, et al. . Pembrolizumab followed by AVD in untreated early unfavorable and advanced stage classical Hodgkin lymphoma. Blood. 2021;137(10):1318‐1326.
    1. Bröckelmann PJ, Goergen H, Keller U, et al. . Efficacy of nivolumab and AVD in early-stage unfavorable classic Hodgkin lymphoma: the randomized phase 2 German Hodgkin Study Group NIVAHL trial. JAMA Oncol. 2020;6(6):872-880.
    1. Connors JM, Jurczak W, Straus DJ, et al. ; ECHELON-1 Study Group . Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331-344.
    1. Ramchandren R, Domingo-Domènech E, Rueda A, et al. . Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the phase II CheckMate 205 study. J Clin Oncol. 2019;37(23):1997-2007.
    1. Kumar A, Casulo C, Yahalom J, et al. . Brentuximab vedotin and AVD followed by involved-site radiotherapy in early stage, unfavorable risk Hodgkin lymphoma. Blood. 2016;128(11):1458-1464.
    1. Park SI, Shea TC, Olajide O, et al. . ABVD followed by BV consolidation in risk-stratified patients with limited-stage Hodgkin lymphoma. Blood Adv. 2020;4(11):2548-2555.
    1. Brice P, de Kerviler E, Friedberg JW. Classical Hodgkin lymphoma. Lancet. 2021;S0140-6736(20)32207-8.
    1. van Leeuwen FE, Ng AK. Long-term risk of second malignancy and cardiovascular disease after Hodgkin lymphoma treatment. Hematology (Am Soc Hematol Educ Program). 2016;2016(1):323-330.
    1. Bento L, Boumendil A, Finel H, et al. . Radioimmunotherapy-augmented BEAM chemotherapy vs BEAM alone as the high-dose regimen for autologous stem cell transplantation (ASCT) in relapsed follicular lymphoma (FL): a retrospective study of the EBMT Lymphoma Working Party. Bone Marrow Transplant. 2017;52(8):1120-1125.
    1. Briones J, Novelli S, García-Marco JA, et al. ; Grupo Español de Linfomas y Trasplante Autologo de Médula Ósea (GELTAMO) . Autologous stem cell transplantation after conditioning with yttrium-90 ibritumomab tiuxetan BEAM in refractory non-Hodgkin diffuse large B-cell lymphoma: results of a prospective, multicenter, phase II clinical trial. Haematologica. 2014;99(7):e126.
    1. Ciochetto C, Botto B, Passera R, et al. . Yttrium-90 ibritumomab tiuxetan (Zevalin) followed by BEAM (Z-BEAM) conditioning regimen and autologous stem cell transplantation (ASCT) in relapsed or refractory high-risk B-cell non-Hodgkin lymphoma (NHL): a single institution Italian experience. Ann Hematol. 2018;97(9):1619-1626.
    1. Hertzberg M, Gandhi MK, Trotman J, et al. ; Australasian Leukaemia Lymphoma Group (ALLG) . Early treatment intensification with R-ICE and 90Y-ibritumomab tiuxetan (Zevalin)-BEAM stem cell transplantation in patients with high-risk diffuse large B-cell lymphoma patients and positive interim PET after 4 cycles of R-CHOP-14. Haematologica. 2016;102(2):356-363.
    1. Kolstad A, Laurell A, Jerkeman M, et al. ; Nordic Lymphoma Group . Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood. 2014;123(19):2953-2959.
    1. Krishnan AY, Palmer J, Nademanee AP, et al. . Phase II study of yttrium-90 ibritumomab tiuxetan plus high-dose BCNU, etoposide, cytarabine, and melphalan for non-Hodgkin lymphoma: the role of histology. Biol Blood Marrow Transplant. 2017;23(6):922-929.
    1. Mei M, Wondergem MJ, Palmer JM, et al. . Autologous transplantation for transformed non-Hodgkin lymphoma using an yttrium-90 ibritumomab tiuxetan conditioning regimen. Biol Blood Marrow Transplant. 2014;20(12):2072-2075.
    1. Shimoni A, Avivi I, Rowe JM, et al. . A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer. 2012;118(19):4706-4714.
    1. Vose JM, Bierman PJ, Enke C, et al. . Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(3):461-467.
    1. Vose JM, Bierman PJ, Loberiza FR, et al. . Phase II trial of 131-Iodine tositumomab with high-dose chemotherapy and autologous stem cell transplantation for relapsed diffuse large B cell lymphoma. Biol Blood Marrow Transplant. 2013;19(1):123-128.
    1. Vose JM, Carter S, Burns LJ, et al. . Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol. 2013;31(13):1662-1668.
    1. Winter JN, Inwards DJ, Spies S, et al. . Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2009; 27(10):1653-1659.
    1. Conlon KC, Sportes C, Brechbiel MW, et al. . 90Y-daclizumab (anti-CD25), high-dose carmustine, etoposide, cytarabine, and melphalan chemotherapy and autologous hematopoietic stem cell transplant yielded sustained complete remissions in 4 patients with recurrent Hodgkin’s lymphoma. Cancer Biother Radiopharm. 2020;35(4):249-261.
    1. Janik JE, Morris JC, O’Mahony D, et al. . 90Y-daclizumab, an anti-CD25 monoclonal antibody, provided responses in 50% of patients with relapsed Hodgkin’s lymphoma. Proc Natl Acad Sci USA. 2015;112(42):13045-13050.
    1. Waldmann TA, White JD, Carrasquillo JA, et al. . Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood. 1995;86(11):4063-4075.
    1. Dancey G, Violet J, Malaroda A, et al. . A phase I clinical trial of CHT-25 a 131I-labeled chimeric anti-CD25 antibody showing efficacy in patients with refractory lymphoma. Clin Cancer Res. 2009;15(24):7701-7710.
    1. Siegel JA, Thomas SR, Stubbs JB, et al. . MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.
    1. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023-1027.
    1. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34(4):689-694.
    1. Wiseman GA, Kornmehl E, Leigh B, et al. . Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44(3):465-474.
    1. Cremonesi M, Ferrari M, Stabin M, et al. . Different dosimetric methods may greatly influence the pretreatment evaluation in NHL patients submitted to high dose Zevalin therapy. Eur J Nucl Med Mol Imaging. 2005;32:S24-S25.
    1. Chiesa C, Botta F, Di Betta E, et al. . Dosimetry in myeloablative (90)Y-labeled ibritumomab tiuxetan therapy: possibility of increasing administered activity on the base of biological effective dose evaluation. Preliminary results. Cancer Biother Radiopharm. 2007;22(1):113-120.
    1. Bearman SI, Appelbaum FR, Buckner CD, et al. . Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol. 1988;6(10):1562-1568.
    1. Cheson BD, Pfistner B, Juweid ME, et al. ; International Harmonization Project on Lymphoma . Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-586.
    1. Skolnik JM, Barrett JS, Jayaraman B, Patel D, Adamson PC. Shortening the timeline of pediatric phase I trials: the rolling six design. J Clin Oncol. 2008;26(2):190-195.
    1. Ramsey SD, Nademanee A, Masszi T, et al. . Quality of life results from a phase 3 study of brentuximab vedotin consolidation following autologous haematopoietic stem cell transplant for persons with Hodgkin lymphoma. Br J Haematol. 2016;175(5):860-867.
    1. Moskowitz CH, Nademanee A, Masszi T, et al. ; AETHERA Study Group . Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853-1862.
    1. Cassaday RD, Press OW, Pagel JM, et al. . Phase I study of a CD45-targeted antibody-radionuclide conjugate for high-risk lymphoma. Clin Cancer Res. 2019;25(23):6932-6938.
    1. Tuazon SA, Cassaday RD, Gooley TA, et al. . Yttrium-90 anti-CD45 immunotherapy followed by autologous hematopoietic cell transplantation for relapsed or refractory lymphoma. Transplant Cell Ther. 2021;27(1):57.e1-57.e8.
    1. Nieto Y, Thall PF, Ma J, et al. . Phase II trial of high-dose gemcitabine/busulfan/melphalan with autologous stem cell transplantation for primary refractory or poor-Risk relapsed Hodgkin lymphoma. Biol Blood Marrow Transplant. 2018;24(8):1602-1609.
    1. Nieto Y, Valdez BC, Thall PF, et al. . Vorinostat combined with high-dose gemcitabine, busulfan, and melphalan with autologous stem cell transplantation in patients with refractory lymphomas. Biol Blood Marrow Transplant. 2015;21(11):1914-1920.
    1. Nieto Y, Valdez BC, Thall PF, et al. . Double epigenetic modulation of high-dose chemotherapy with azacitidine and vorinostat for patients with refractory or poor-risk relapsed lymphoma. Cancer. 2016;122(17):2680-2688.
    1. Arai S, Letsinger R, Wong RM, et al. . Phase I/II trial of GN-BVC, a gemcitabine and vinorelbine-containing conditioning regimen for autologous hematopoietic cell transplantation in recurrent and refractory hodgkin lymphoma. Biol Blood Marrow Transplant. 2010;16(8):1145-1154.
    1. Redondo AM, Valcárcel D, González-Rodríguez AP, et al. ; Grupo Español de Linfomas y Trasplante Autólogo de Médula Ósea (GELTAMO) . Bendamustine as part of conditioning of autologous stem cell transplantation in patients with aggressive lymphoma: a phase 2 study from the GELTAMO group. Br J Haematol. 2019;184(5):797-807.
    1. McDevitt MR, Ma D, Lai LT, et al. . Tumor therapy with targeted atomic nanogenerators. Science. 2001;294(5546):1537-1540.
    1. Jurcic JG, Larson SM, Sgouros G, et al. . Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233-1239.
    1. Schmidt D, Neumann F, Antke C, et al. In: Morgenstern A , ed. Proceedings of the 4th Alpha-immunotherapy symposium. Düsseldorf, Germany; 2004.
    1. Allen BJ, Raja C, Rizvi S, et al. . Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2014;4(12):1318-1324.
    1. Kneifel S, Cordier D, Good S, et al. . Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin Cancer Res. 2006;12(12):3843-3850.
    1. Zhang M, Yao Z, Zhang Z, et al. . The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res. 2006;66(16):8227-8232.
    1. Raja C, Graham P, Abbas Rizvi SM, et al. . Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2014;6(6):846-852.
    1. Zalutsky MR, Reardon DA, Akabani G, et al. . Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2007;49(1):30-38.
    1. Cordier D, Forrer F, Bruchertseifer F, et al. . Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37(7):1335-1344.
    1. Rosenblat TL, McDevitt MR, Mulford DA, et al. . Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303-5311.
    1. Allen BJ, Singla AA, Rizvi SM, et al. . Analysis of patient survival in a phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy. 2011;3(9):1041-1050.
    1. Kratochwil C, Giesel FL, Bruchertseifer F, et al. . (2)(1)(3)Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41(11):2106-2119.
    1. Meredith R, Torgue J, Shen S, et al. . Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636-1642.
    1. Meredith RF, Torgue J, Azure MT, et al. . Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother Radiopharm. 2014;29(1):12-17.
    1. Jurcic JG, Ravandi F, Pagel JM, et al. . Phase I trial of targeted alpha-particle immunotherapy with actinium-225 (Ac-225)-lintuzumab (anti-CD33) and low-dose cytarabine (LDAC) in older patients with untreated acute myeloid leukemia (AML). Blood. 2016;128(22):4050.
    1. Kratochwil C, Bruchertseifer F, Giesel F, Apostolidis C, Haberkorn U, Morgenstern A. Ac-225-DOTATOC – dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2015;42(S1):. Abstract OP089. JRC96378..
    1. Kratochwil C, Giesel FL, Stefanova M, et al. . PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170-1176.
    1. Autenrieth ME, Horn T, Kurtz F, et al. . Intravesikale Radioimmuntherapie des Carcinoma in situ der Harnblase nach BCG‐Versagen [Intravesical radioimmunotherapy of carcinoma in situ of the urinary bladder after BCG failure]. Urologe A. 2016;56(1):40-43.
    1. Berger MS, Thomas K, Ekaterina D, et al. . Actinium labeled daratumumab demonstrates enhanced killing of multiple myeloma cells over naked daratumumab. Blood. 2017;130(Supplement 1):4427.
    1. Kratochwil C, Bruchertseifer F, Rathke H, et al. . Targeted α-Therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624-1631.
    1. Autenrieth ME, Seidl C, Bruchertseifer F, et al. . Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study. Eur J Nucl Med Mol Imaging. 2018;45(8):1364-1371.
    1. Kratochwil C, Bruchertseifer F, Rathke H, et al. . Targeted α-Therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59(5):795-802.

Source: PubMed

3
Předplatit