Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity's Metabolic Consequences

Melina Konstantinidi, Antonios E Koutelidakis, Melina Konstantinidi, Antonios E Koutelidakis

Abstract

Background: Weight management and obesity prevention is a basic aim of health organizations in order to decrease the prevalence of various metabolic disorders. The aim of the present review article was the evaluation of the possible role of functional foods and their bioactive compounds as alternative way to promote weight management and prevent obesity and its metabolic consequences. Methods: Approximately 100 articles were selected from Scopus, PubMed, Google Scholar, and Science Direct, by using relative key words, and based mainly on recent animal, clinical or epidemiological studies. Results: The literature review highlighted the possible effect of specific functional foods such as coffee, green tea, berries, nuts, olive oil, pomegranate, avocado, and ginger. Specific bioactive compounds of those foods-such as caffeine, catechins, gallic acid, anthocyanins, ascorbic acid, polyphenols, oleuropein, capsaicin, and quercetin-may contribute to weight management, obesity prevention, and obesity's metabolic consequences. The possible mechanisms include effect on satiety, lipid absorption, fatty acids beta oxidation, stimulation of thermogenesis, etc. Conclusions: Functional foods, as part of a balanced diet, could be useful in the direction of weight management and decrease of obesity's' metabolic consequences. However, the scientific evidence is unclear and in most cases controversial and more clinical and epidemiological studies are needed in order to further investigate the mechanisms of their possible effect.

Keywords: bioactive compounds; functional foods; metabolic consequences; obesity; weight management.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Possible mechanisms of ginger effect on body weight management.

References

    1. Materko W., Roberto P., Carvalho A., Nadal J., Santos E.L. Accuracy of the WHO’s body mass index cut-off points to measure gender- and age-specific obesity in middle-aged adults living in the city of Rio de Janeiro, Brazil. JPHR. 2017;6:904. doi: 10.4081/2Fjphr.2017.904.
    1. Farajian P., Risvas G., Karasouli K., Pounis G.D., Kastorini C.M., Panagiotakos D.B., Zampelas A. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: The GRECO study. Atherosclerosis. 2011;217:525–530. doi: 10.1016/j.atherosclerosis.2011.04.003.
    1. Rolls B.J. What is the role of portion control in weight management. Int. J. Obes. 2014;38:1–8. doi: 10.1038/ijo.2014.82.
    1. Brown L., Poudyal H., Panchal S.K. Functional foods as potential therapeutic options for metabolic syndrome. Obes. Rev. 2015;16:914–941. doi: 10.1111/obr.12313.
    1. Brown L., Caligiuri S., Brown D., Pierce G. Clinical trials using functional foods provide unique challenges. J. Funct. Foods. 2018;45:233–238. doi: 10.1016/j.jff.2018.01.024.
    1. Martirosyan D., Singh J. A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease. FFHD. 2015;5:209–223. doi: 10.31989/ffhd.v5i6.183012ol.
    1. Ntrigiou V., Ntrigios I., Rigopoulos N., Dimou C., Koutelidakis A. Functional food consumption correlates with anthropometric characteristics and body composition in healthy adults. Curr. Top. Nutraceut. Res. 2019;18:279–288.
    1. Elmaliklis I.N., Liveri A., Ntelis B., Paraskeva K., Goulis I., Koutelidakis A. Increased Functional Foods’ Consumption and Mediterranean Diet Adherence May Have a Protective Effect in the Appearance of Gastrointestinal Diseases: A Case–Control Study. Medicines. 2019;6:50. doi: 10.3390/medicines6020050.
    1. Koutelidakis A., Dimou C. The effects of functional food and bioactive compounds on biomarkers of cardiovascular diseases. In: Martirosyan D., editor. Functional Foods Text Book. 1st ed. Functional Food Center; Dallas, TX, USA: 2016. [(accessed on 15 February 2019)]. pp. 89–117. Available online: .
    1. Karasawa M.G., Chakravarthi M. Fruits as Prospective Reserves of bioactive Compounds: A Review. Nat. Prod. Bioprospect. 2018;8:335–346. doi: 10.1007/s13659-018-0186-6.
    1. Cianciosia D., Valera-Lopez A., Forbes-Hermandez T.Y., Gasparrini M., Afrin S., Reboredo-Rodrigueza P., Zhang J., Quiles J.L., Nabav S.F., Battino M., et al. Targeting Molecular Pathways in Cancer Stem Cells by Natural Bioactive Compounds. Pharmacol. Res. 2018;135:150–165. doi: 10.1016/j.phrs.2018.08.006.
    1. Masheb R.M., Ruser C., Min K.M., Bullock A.J., Dorflinger L. Does food addiction contribute to excess weight among clinic patients seeking weight reduction? Examination of the Modified Yale Food Addiction Survey. Compr. Psychiatry. 2018;84:1–6. doi: 10.1016/j.comppsych.2018.03.006.
    1. Fortuna J.L. The Obesity Epidemic and Food Addiction: Clinical Similarities to Drug Dependence. J. Psychoact. Drugs. 2012;44:56–63. doi: 10.1080/02791072.2012.662092.
    1. Panchal S.K., Poudyal H., Waanders J., Brown L. Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. J. Nutr. 2012;142:690–697. doi: 10.3945/jn.111.153577.
    1. Pan M.H., Tung Y.C., Yang G., Li S., Ho C.T. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct. 2016;7:4481–4491. doi: 10.1039/C6FO01168C.
    1. Nekooeian A.A., Khalili A., Khosravi M.B. Oleuropein offers cardioprotection in rats with simultaneous type 2 diabetes and renal hypertension. Indian J. Pharmacol. 2014;46 doi: 10.4103/0253-7613.135951.
    1. Gupta V., Mah X.J., Garcia M.C., Antonypillai C., van der Poorten D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J. Gastroenterol. 2015;21:10621–10635. doi: 10.3748/wjg.v21.i37.10621.
    1. Abdulrazaq N.B., Cho M., Win N., Zaman R., Rahman M.T. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br. J. Nutr. 2011;108:1194–1201. doi: 10.1017/S0007114511006635.
    1. Nohara C., Yokoyama D., Tanaka W., Sogon T., Sakono M., Sakakibara H. Daily Consumption of Bilberry (Vacciniummyrtillus L.) Extracts Increases the Absorption Rate of Anthocyanins in Rats. J. Agric. Food Chem. 2018;66:7958–7964. doi: 10.1021/acs.jafc.8b02404.
    1. Martin D.A., Smyth J.A., Liu Z., Bolling B.W. Aronia berry (Aroniamitschurinii‘Viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion. J. Functional. Foods. 2018;44:48–57. doi: 10.1016/j.jff.2018.02.025.
    1. Onwuli D.O., Brown H., Ozoani H.A. Antihyperglycaemic Effect of TetracarpidiumConophorum Nuts in Alloxan Induced Diabetic Female Albino Rats. ISRN Endocrinol. 2014:1–4. doi: 10.1155/2014/124974.
    1. Jose T., Pattanaik A.K., Jadhav S.E., Dutta N., Sharma S. Nutrient digestibility, hindgut metabolites and antioxidant status of dogs supplemented with pomegranate peel extract. J. Nutr. Sci. 2017;36:1–5. doi: 10.1017/jns.2017.34.
    1. Bae J.H., Park J.H., Im S., Song D.K. Coffee and health. Integr. Med. Res. 2014;3:189–191. doi: 10.1016/j.imr.2014.08.002.
    1. Sarriá B., Martínez-López S., Sierra-Cinos J.L., García-Diz L., Mateos R., Bravo-Clemente L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 2016;57:269–278. doi: 10.1007/s00394-016-1316-8.
    1. Nuhu A.A. Bioactive Micronutrients in Coffee: Recent Analytical Approaches for Characterization and Quantification. ISRN. 2014 doi: 10.1155/2014/384230.
    1. Tamara B., Boehm N., Janzowski C., Lang R., Hofmann T., Stockis J.P., Albert F.W., Stiebitz H., Bytof G., Lantz I., et al. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: Results from an intervention study. Mol. Nutr. Food Res. 2011;55:793–797. doi: 10.1002/mnfr.201100093.
    1. Burwell H., Vilsack H. Dietary Guidelines Advisory Committee USDA. DGAC 2015, Chapter 1–7. [(accessed on 15 February 2019)]; Available online: .
    1. Beaudoin M.S., Robinson L.E., Graham T.E. An Oral Lipid Challenge and Acute Intake of Caffeinated Coffee Additively Decrease Glucose Tolerance in Healthy Men. J. Nutr. 2011;141:574–581. doi: 10.3945/jn.110.132761.
    1. Zuchinali P., Souza G.C., Pimentel M., Chemello D., Zimerman A., Giaretta V., Salamoni J., Fracasso B., Zimerman L.I., Rohde L.E. Short-term Effects of High-Dose Caffeine on Cardiac Arrhythmias in Patients With Heart Failure: A Randomized Clinical Trial. JAMA Intern. Med. 2016;176:1752–1759. doi: 10.1001/jamainternmed.2016.6374.
    1. Martinez-Saez N., Ullate M., Martin-Cabrejas M.A., Martorell P., Genovis S., Ramon D., Castillo M.D. A novel antioxidant beverage for body weight control based on coffee Silverskin. Food Chem. 2014;150:227–234. doi: 10.1016/j.foodchem.2013.10.100.
    1. Onakpoya I., Terry R., Ernst E. The Use of Green Coffee Extract as a Weight Loss Supplement: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. Gastroenterol. Res. Pract. 2011:1–6. doi: 10.1155/2011/382852.
    1. Laurence G., Wallman K.G. Effects of caffeine on time trial performance in sedentary men. J. Sports Sci. 2012;30:1235–1240. doi: 10.1080/02640414.2012.693620.
    1. Moisey L.L., Robinson L.E., Graham T.E. Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males. Br. J. Nutr. 2010;103:833–841. doi: 10.1017/S0007114509992406.
    1. Schubert M.M., Irwin C., Seay R.F., Clarke H.E., Allegro D., Desbrow B. Caffeine, coffee, and appetite control: A review. Int. J. Food Sci. Nutr. 2017;68:901–912. doi: 10.1080/09637486.2017.1320537.
    1. Renouf M., Guy P., Marmet C., Longet K., Fraering A.L., Moulin J., Barron D., Dionisi F., Cavin C., Steiling H., et al. Plasma appearance and correlation between coffee and green tea metabolites in human subjects. Br. J. Nutr. 2010;104:1635–1640. doi: 10.1017/S0007114510002709.
    1. Hu J., Webster D., Cao J., Shao A. The safety of green tea and green tea extract consumption in adults Results of a systematic review. Regul. Toxicol. Pharmacol. 2018;95:412–433. doi: 10.1016/j.yrtph.2018.03.019.
    1. Yan J.Q., Yan Z., BaoLu Z. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci. China Life. 2013;56:804–810. doi: 10.1007/s11427-013-4512-2.
    1. Kongpichitchoke T., Chiu M.T., Huang T.C., Hsu J.L. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKC_ Activation: In Vitro and in Silico Studies. Molecules. 2016;21:1346. doi: 10.3390/molecules21101346.
    1. Suzuki T., Pervin M., Goto S., Isemura M., Nakamura Y. Beneficial Effects of Tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity. Molecules. 2016;21:1305. doi: 10.3390/molecules21101305.
    1. Macedo Mendes R. Quantification of catechins and caffeine from green tea (Camellia sinensis) infusions, extract, and ready-to-drink beverages-Quantificação de catequinas e cafeína do cháverde (Camellia sinensis) infusão, extrato e bebidaprontο. Ciênc. Tecnol. Aliment. 2010;32:163–166. doi: 10.1590/S0101-20612012005000009.
    1. Koutelidakis A., Kapsokefalou M. Holistic approaches of tea bioactivity: Interactions of tea and meal components studied in vitro and in vivo. In: Preedy V., editor. Tea in Health and Disease Prevention. Elsevier; Amsterdam, The Netherlands: 2012. pp. 36–42.
    1. Yang C.S., Zhang J., Zhang L., Huang J., Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016;60:160–174. doi: 10.1002/mnfr.201500428.
    1. Gosselin C., Haman F. Effects of green tea extracts on non shivering thermogenesis during mild cold exposure in young men. Br. J. Nutr. 2013;110:282–288. doi: 10.1017/S0007114512005089.
    1. Yoneshiro T., Aita S., Kawai Y., Iwanaga T., Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am. J. Clin. Nutr. 2012;95:845–850. doi: 10.3945/ajcn.111.018606.
    1. Morrison S.F., Nakamura K. Central neural pathways for thermoregulation. Front. Biosci. 2011;16:74–104. doi: 10.2741/3677.
    1. Janssens P., Hursel R., Westerterp-Plantenga M.S. Nutraceuticals for body-weight management: The role of green tea catechins. Physiol. Behav. 2016;162:83–87. doi: 10.1016/j.physbeh.2016.01.044.
    1. Toolsee N.A., Aruoma O.I., Gunness T.K., Kowlessur S., Dambala V., Murad F., Googoolye K., Daus D., Indelicato J., Rondeau P., et al. Effectiveness of Green Tea in a Randomized Human Cohort: Relevance to Diabetes and Its Complications. BioMed Res. Int. 2013:1–12. doi: 10.1155/2013/412379.
    1. Chen I.J., Chia-Yu L., Jung-Peng C., Chung-Hua H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016;35:592–599. doi: 10.1016/j.clnu.2015.05.003.
    1. Basu A., Sanchez K., Leyva M.J., Wu M., Betts N.M., Aston C.E., Lyons T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010;29:31–40. doi: 10.1080/07315724.2010.10719814.
    1. Egert S., Tereszczuk J., Wein S., Muller M.J., Frank J., Rimbach G., Wolffram S. Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylatedcatechins from green tea in humans. Eur. J. Nutr. 2012;52:281–288. doi: 10.1007/s00394-012-0330-8.
    1. Mahler A., Steiniger J., Bock M., Klug L., Parreidt N., Lorenz M., Zimmermann B.F., Krannich A., Paul F., Boschmann M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2015;101:487–495. doi: 10.3945/ajcn.113.075309.
    1. Koutelidakis A., Rallidis L., Koniari K., Panagiotakos D., Komaitis M., Zampelas A., Anastasiou-Nana M., Kapsokefalou M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur. J. Nutr. 2013:1–8. doi: 10.1007/s00394-013-0548-0.
    1. Basu A., Du M., Sanchez K., Leyva M.J., Betts N.M., Blevins S., Wu M., Aston C.E., Lyons T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition. 2011;27:206–213. doi: 10.1016/j.nut.2010.01.015.
    1. Yamashita Y., Wang L., Wang L., Tanaka Y., Zhang T., Ashida H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014;5:2420–2429. doi: 10.1039/C4FO00095A.
    1. Perez-Jimenez J., Neveu V., Vos F., Scalbert A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010;64:112–120. doi: 10.1038/ejcn.2010.221.
    1. Kowalska K., Olejnik A. Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:446–452. doi: 10.1097/MCO.0000000000000322.
    1. Nilsson A., Salo I., Plaza M., Bjorck I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE. 2017;12:e0188173. doi: 10.1371/journal.pone.0188173.
    1. Choi H.S., Kim S., Kim M.J., Kim M.S., Kim J., Park C.W., Seo D., Shin S.S., Sang W.O. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 2017;42:90–97. doi: 10.1016/j.jgr.2017.01.003.
    1. Lehtonen H.M., Suomela J.P., Tahvonen R., Vaarno J., Venojarvi M., Viikari J., Kallio J. Berry meals and risk factors associated with metabolic syndrome. Eur. J. Clin. Nutr. 2010;64:614–621. doi: 10.1038/ejcn.2010.27.
    1. Batista Â.G., Soares E.S., Mendonça M., Silva J.K., Dionísio A.P., Sartori C.R., Cruz-Höfling M.A., MarósticaJúnior M.R. Jaboticaba berry peel intake prevents insulin resistance-induced tau phosphorylation in mice. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201600952.
    1. Solverson P., Rumpler W., Leger J., Redan B., Ferruzzi M., Baer D., Castonguay T., Novotny J. Blackberry Feeding Increases Fat Oxidation and Improves Insulin Sensitivity in Overweight and Obese Males. Nutrients. 2018;10:1048. doi: 10.3390/nu10081048.
    1. Fischer U.A., Carle R., Kammerer D.R. Identification and quantification of phenolic compounds from pomegranate (Punicagranatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem. 2011;127:807–821. doi: 10.1016/j.foodchem.2010.12.156.
    1. Zhao X., Yuan Z., Fang Y., Yin Y., Feng L. Flavonols and Flavones Changes in Pomegranate (Punicagranatum L.) Fruit Peel during Fruit Development. J. Agric. Sci. Technol. 2014;16:1649–1659.
    1. Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punicagranatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039.
    1. Arun K.B., Jayamurthy P., Anusha C.V., Mahesh S.K., Nisha P. Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties. J. Food Process. Preserv. 2016:1745–4549. doi: 10.1111/jfpp.13108.
    1. Ambigaipalan P., de Camargo A.C., Shahidi F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESIMS. Food Chem. 2016;221:1883–1894. doi: 10.1016/j.foodchem.2016.10.058.
    1. Medjakovic S., Jungbauer A. Pomegranate: A fruit that ameliorates metabolic syndrome. Food Funct. 2013;4:19–39. doi: 10.1039/C2FO30034F.
    1. Lehtonen H.M., Suomela J.P., Tahvonen R., Yang B., Venojarvi M., Viikari J., Kallio H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011;65:394–401. doi: 10.1038/ejcn.2010.268.
    1. Ros E., Tapsell L.C., Sabaté J. Nuts and Berries for Heart Health. Curr. Atheroscler. Rep. 2010;12:397–406. doi: 10.1007/s11883-010-0132-5.
    1. Kalogeropoulos N., Chiou A., Ioannou M.S., Karathanos V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013;64:757–767. doi: 10.3109/09637486.2013.793298.
    1. Hu F.B., Manson J.E. Omega-3 fatty acids and secondary prevention of cardiovascular disease—Is it just a fish tale? Comment on “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease. Arch. Intern. Med. 2012;172:694–696.
    1. Sánchez-González C., Izquierdo-Pulido M. Health Benefits of Walnut Polyphenols: An Exploration beyond Their Lipid Profile. Crit. Rev. Food Sci. Nutr. 2015:1–42. doi: 10.1080/10408398.2015.1126218.
    1. Coates A.M., Howe P.R.C. Edible nuts and metabolic health. Curr. Opin. Lipidol. 2007;18:25–30. doi: 10.1097/MOL.0b013e3280123a47.
    1. Kranz S., Hill A.M., Fleming J.A., Hartman T.J., West S.J., Kris-Etherton P.M. Nutrient displacement associated with walnut supplementation in men. J. Hum. Nutr. Diet. 2013;27:247–254. doi: 10.1111/jhn.12146.
    1. Casas-Agustench P., Lo´pez-Uriarte P., Bullo M., Ros E., Cabre´-Vila J.J., Salas-Salvado J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011;21:126–135. doi: 10.1016/j.numecd.2009.08.005.
    1. Mohan V., Gayathri R., Jaacks L.M., Lakshmipriya N., Mohan A.R., Spiegelman D., Jeevan R.G., Balasubramaniam K., Shobana S., Jayanthan M., et al. Cashew Nut Consumption Increases HDL Cholesterol and Reduces Systolic Blood Pressure in Asian Indians with Type 2 Diabetes: A 12-Week Randomized Controlled Trial. J. Nutr. 2018;148:63–69. doi: 10.1093/jn/nxx001.
    1. Katz D.L., Davidhi A., Yingying M., Kavak Y., Bifulco L., YanchouNjike V. Effects of Walnuts on Endothelial Function in Overweight Adults with Visceral Obesity: A Randomized, Controlled, Crossover Trial Yale University Prevention Research Center, Griffin Hospital, Derby, A Randomized, Controlled, Crossover Trial. J. Am. Coll. Nutr. 2013;31:415–423. doi: 10.1080/07315724.2012.10720468.
    1. Tan S.Y., Mattes R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized, controlled trial. Eur. J. Clin. Nutr. 2013;67:1205–1214. doi: 10.1038/ejcn.2013.184.
    1. Martin-Pelaez S., Covas M.I., Fito M., Kusar A., Pravs I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013;57:760–771. doi: 10.1002/mnfr.201200421.
    1. Brinkman M.T., Buntinx F., Kellen E., Van Dongen M., Dagnelie P.C., Muls E., Zeegers M.P. Consumption of animal products, olive oil and dietary fat and results from the Belgian case–control study on bladder cancer risk. Eur. J. Cancer. 2011;47:436–442. doi: 10.1016/j.ejca.2010.09.027.
    1. Psaltopoulou T., Kosti R.I., Haidopoulos D., Dimopoulos M., Panagiotakos D.B. Olive oil intake is inversely related to cancer prevalence: A systematic review and a metaanalysis of 13.800 patients and 23.340 controls in 19 observational studies. Lipids Health Dis. 2011;10:127. doi: 10.1186/1476-511X-10-127.
    1. Muzzalupo I., Stefanizzi F., Perri E., Chiappetta A. Transcript levels of CHL P gene, antioxidants and chlorophylls contents in olive oleaeuropaea pericarps: A comparative study on eleven olive cultivars harvested in two ripening stages. Plant Foods Hum. Nutr. 2011;66:1–10. doi: 10.1007/s11130-011-0208-6.
    1. Rezaei S., Akhlaghi M., Sasani M.R., Boldaji R. Olive oil improved fatty liver severity independent of cardiometabolic correction in patients with 2 non-alcoholic fatty liver disease, a randomized clinical trial. Nutrition. 2018;57:154–161. doi: 10.1016/j.nut.2018.02.021.
    1. Camargo A., Ruano J., Fernandez J.M., Parnell L.D., Jimenez A., Santos-Gonzalez M., Marin C., Perez-Martinez P., Uceda M., Lopez-Miranda J., et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom. 2010;11:253. doi: 10.1186/1471-2164-11-253.
    1. Moreno-Luna R., Muñoz-Hernandez R., Miranda M.L., Costa A.L., Jimenez-Jimenez L., Vallejo-Vaz A.J., Muriana F., Villar J., Stiefel P. Olive Oil Polyphenols Decrease Blood Pressure and Improve Endothelial Function in Young Women with Mild Hypertension. Am. J. Hypertens. 2012;25:1299–1304. doi: 10.1038/ajh.2012.128.
    1. Nigam P., Bhatt S., Misra A., Chadha D.S., Vaidya M., Dasgupta J., Pasha Q. Effect of a 6-Month Intervention with Cooking Oils Containing a High Concentration of Monounsaturated Fatty Acids (Olive and Canola Oils) Compared with Control Oil in Male Asian Indians with Nonalcoholic Fatty Liver Disease. Diabetes Technol. Ther. 2014;16 doi: 10.1089/dia.2013.0178.
    1. Kopec R.E., Cooperstone J.L., Schweiggert R.M., Young G., Harrison E., Francis D., Clinton S., Schwartz S. Avocado Consumption Enhances Human Postprandial Provitamin A Absorption and Conversion from a Novel High–b-Carotene Tomato Sauce and from Carrots. The Journal of Nutrition. J. Nutr. 2015;144:1158–1166. doi: 10.3945/jn.113.187674.
    1. Scott T.M., Rasmussen H.M., Chen O., Johnson E.J. Avocado Consumption Increases Macular PigmentDensity in Older Adults: A Randomized Controlled Trial. Nutrients. 2017;9:919. doi: 10.3390/nu9090919.
    1. USDA (US. Department of Agriculture) Avocado, Almond, Pistachio and Walnut Composition. Nutrient Data Laboratory. Department of Agriculture; Washington, DC, USA: 2011. USDA National Nutrient Database for Standard Reference, Release 24.
    1. Pahua-Ramos M.E., Garduño-Siciliano L., Dorantes-Alvarez L., Chamorro-Cevallos G., Herrera-Martínez J., Osorio-Esquivel O., Ortiz-Moreno A. Reduced-calorie Avocado Paste Attenuates Metabolic Factors Associated with a Hypercholesterolemic-high Fructose Diet in Rats. Plant Foods Hum. Nutr. 2014;69:18–24. doi: 10.1007/s11130-013-0395-4.
    1. Wien M., Haddad E., Oda K., Sabate J. A randomized 3 × 3 crossover study to evaluate the effect of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutr. J. 2013;12:155. doi: 10.1186/1475-2891-12-155.
    1. Dreher M.L., Davenport A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013;53:738–750. doi: 10.1080/10408398.2011.556759.
    1. Rodriguez-Sanchez D.G., Flores-García M., Silva-Platas C., Rizzo S., Torre-Amione G., De la Peña-Diaz A., Hernández-Brenes C., García-Rivas G. Isolation and chemical identification of lipid derivatives from avocado (Perseaamericana) pulp with antiplatelet and antithrombotic activities. RSC Adv. 2015:1–11. doi: 10.1039/c4fo00610k.
    1. Wang L., Bordi P.L., Fleming J.A., Hill A.M., Kris-Etherton P.M. Effect of a Moderate Fat Diet with and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized Controlled Trial. J. Am. Heart Assoc. 2015;4:1355. doi: 10.1161/JAHA.114.001355.
    1. Mahmoud R.H., Elnour W.A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. European Review for Medical and Pharmacological Sciences. Eur. Rev. Med. Pharmacol. Sci. 2013;17:75–83.
    1. Mansour M.S., Yu-Ming N., Roberts A.M., Kelleman M., RoyChoudhury A., St-Onge M.P. Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men: A pilot study. Metabolism. 2012;61:1347–1352. doi: 10.1016/j.metabol.2012.03.016.
    1. Matsumura M.D., Gerald S., Zavorsky G.S., Smoliga J.M. The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness. Phytother. Res. 2015;29:887–893. doi: 10.1002/ptr.5328.
    1. Black C.D., O’Connor P.J. Acute effects of dietary ginger on muscle pain induced by eccentric exercise. Phytother. Res. 2010;24:1620–1626. doi: 10.1002/ptr.3148.
    1. Black C.D., Herring M.P., Hurley D.J., O’Connor P.J. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J. Pain. 2010;11:894–903. doi: 10.1016/j.jpain.2009.12.013.
    1. Attari V.E., Mahdavi A.M., Javadivala Z., Mahluji S., Vahed S.Z., Ostadrahimi A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother. Res. 2017;32:1–9. doi: 10.1002/ptr.5986.
    1. Ahn E.K., Oh J.S. Inhibitory effect of Galanolactone isolated from Zingiber officinale Roscoe extract on adipogenesis in 3T3-L1 cells. J. Korean Soc. Appl. Biol. Chem. 2012;55:63–68. doi: 10.1007/s13765-012-0011-6.
    1. Misawa K., Hashizume K., Yamamoto M., Minegishi Y., Hase T., Shimotoyodome A. Ginger extract prevents high-fat dietinduced obesity in mice via activation of the peroxisome proliferator activated receptor δ pathway. J. Nutr. Biochem. 2015;26:1058–1067. doi: 10.1016/j.jnutbio.2015.04.014.
    1. Okamoto M., Irii H., Tahara Y., Ishii H., Hirao A., Udagawa H., Shimizu I. Synthesis of a new [6]-gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet. J. Med. Chem. 2011;54:6295–6304. doi: 10.1021/jm200662c.
    1. Abd Allah E.S., Makboul R., Mohamed A.O. Role of serotonin and nuclear factor-kappa B in the ameliorative effect of ginger on acetic acid-induced colitis. Pathophysiology. 2016;23:35–42. doi: 10.1016/j.pathophys.2015.12.001.
    1. Tzeng T.F., Liu I.M. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine. 2013;20:481–487. doi: 10.1016/j.phymed.2012.12.006.
    1. De lasHeras N., Valero-Muñoz M., Martín-Fernández B., Ballesteros S., López-Farré A., Ruiz-Roso B., Lahera V. Molecular factors involved in the hypolipidemic-and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2017;42:209–215. doi: 10.1139/apnm-2016-0374.
    1. Palatty P.L., Haniadka R., Valder B., Arora R., Baliga M.S. Ginger in the prevention of nausea and vomiting: A review. Crit. Rev. Food Sci. Nutr. 2013;53:659–669. doi: 10.1080/10408398.2011.553751.
    1. Hu M.L., Rayner C.K., Wu K.L., Chuah S.K., Tai W.C., Chou Y.P., Chiu Y.C., Chiu K.W., Hu T.H. Effect of ginger on gastric motility and symptoms of functional dyspepsia. World J. Gastroenterol. 2011;17:105–110. doi: 10.3748/wjg.v17.i1.105.
    1. Jin Z., Lee G., Kim S., Park C.S., Park Y.S., Jin Y.H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J. Physiol. Pharmacol. 2014;18:149–153. doi: 10.4196/kjpp.2014.18.2.149.
    1. Lua P.L., Salihah N., Mazlan N. Effects of inhaled ginger aromatherapy on chemotherapy-induced nausea and vomiting and healthrelated quality of life in women with breast cancer. Complementary Therapies in Medicine. Complement. Ther. Med. 2015;23:396–404. doi: 10.1016/j.ctim.2015.03.009.
    1. Neveen I. Protective effects of aqueous extracts of cinnamon and ginger herbs against obesity and diabetes in obese diabetic rat. World J. Dairy Food Sci. 2014;9:145–153. doi: 10.5829/idosi.wjdfs.2014.9.2.1137.
    1. Saravanan G., Ponmurugan P., Deepa M.A., Senthilkumar B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric. 2014;94:2972–2977. doi: 10.1002/jsfa.6642.
    1. Wadikar D.D., Premavalli K.S. Appetizer administration stimulates food consumption, weight gain and leptin levels in male Wistar rats. Appetite. 2011;57:131–133. doi: 10.1016/j.appet.2011.04.001.

Source: PubMed

3
Předplatit