Gam-COVID-Vac, EpiVacCorona, and CoviVac effectiveness against lung injury during Delta and Omicron variant surges in St. Petersburg, Russia: a test-negative case-control study

Anton Barchuk, Anna Bulina, Mikhail Cherkashin, Natalia Berezina, Tatyana Rakova, Darya Kuplevatskaya, Dmitriy Skougarevskiy, Artemiy Okhotin, Anton Barchuk, Anna Bulina, Mikhail Cherkashin, Natalia Berezina, Tatyana Rakova, Darya Kuplevatskaya, Dmitriy Skougarevskiy, Artemiy Okhotin

Abstract

Background: Monitoring vaccine effectiveness (VE) remains a priority for epidemiological research throughout the COVID-19 pandemic. VE against infection declines with the emergence of new SARS-CoV-2 variants of concern (VOC), but VE against the severe disease remains high. Therefore, we aimed to estimate the effectiveness of COVID-19 vaccines used in Russia against lung injury during Delta and Omicron VOC surges.

Methods: We designed a case-control study (test-negative design) to estimate VE against any (any volume of involved lung parenchyma) and severe (>50% of involved parenchyma) lung injury detected on computer tomography and associated with COVID-19 between October 1, 2021-April 28, 2022 (Delta VOC dominance period followed by Omicron dominance period). We included the data of patients with symptomatic confirmed SARS-CoV-2 infection referred to the low-dose computer tomography triage centres.

Results: Among 23996 patients in the primary analysis, 13372 (55.7%) had any lung injury, and 338 (1.4%) had severe lung injury. The adjusted for age, sex and triage centre VE estimates against any lung injury were 56% (95% confidence interval 54-59) for two-dose Gam-COVID-Vac (Sputnik V), 71% (68-74) for three-dose Gam-COVID-Vac (booster), 2% (-27 to 24) for EpiVacCorona, and 46% (37-53) for CoviVac. VE estimates against severe lung injury were 76% (67-82) for two-dose Gam-COVID-Vac (Sputnik V), 87% (76-93) for three-dose Gam-COVID-Vac, 36% (-63 to 75) for EpiVacCorona, and 80% (45-92) for CoviVac.

Conclusions: Gam-COVID-Vac remained effective against lung injury associated with COVID-19 during Delta and Omicron VOC surges, and one Gam-COVID-Vac booster could be seen as an appropriate option after a two-dose regimen. CoviVac was also effective against lung injury. EpiVacCorona use in population-based vaccination should be halted until effectiveness and efficacy evidence is provided. Trial registration The joint study of COVID-19 vaccine effectiveness in St. Petersburg was registered at ClinicalTrials.gov (NCT04981405, date of registration-August 4, 2021).

Trial registration: ClinicalTrials.gov NCT04981405 NCT00498140.

Keywords: COVID-19; Case–control study; Lung injury; SARS-CoV-2; Vaccine effectiveness.

Conflict of interest statement

Anton Barchuk reports personal fees from AstraZeneca, MSD, and Biocad outside the submitted work. Other authors have no competing interest or competing interests to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study flowchart based on the primary outcome
Fig. 2
Fig. 2
Patients dynamics and proportion of patients with any lung injury through the study period October 2021–April 2022 (dashed vertical line marks the start of the Omicron surge)

References

    1. Prugger C, Spelsberg A, Keil U, Erviti J, Doshi P. Evaluating COVID-19 vaccine efficacy and safety in the post-authorisation phase. BMJ. 2021; 375.
    1. Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, Walker AS, Peto TEA. Effect of COVID-19 vaccination on transmission of alpha and delta variants. N Eng J Med. 2022 doi: 10.1056/NEJMoa2116597.
    1. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, Frankland TB, Ogun OA, Zamparo JM, Gray S. Effectiveness of mrna bnt162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet. 2021;398(10309):1407–1416. doi: 10.1016/S0140-6736(21)02183-8.
    1. Cerqueira-Silva T, Katikireddi SV, de Araujo Oliveira V, Flores-Ortiz R, Júnior JB, Paixão ES, Robertson C, Penna GO, Werneck GL, Barreto ML. Vaccine effectiveness of heterologous coronavac plus bnt162b2 in Brazil. Nat Med. 2022;28(4):838–843. doi: 10.1038/s41591-022-01701-w.
    1. Vokó Z, Kiss Z, Surján G, Surján O, Barcza Z, Pályi B, Formanek-Balku, E., Molnár GA, Herczeg R, Gyenesei A, et al. Nationwide effectiveness of five sars-cov-2 vaccines in hungary-the hun-ve study. Clin Microbiol Infect. 2021.
    1. Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, AlMukdad S, Coyle P, Ayoub HH, Al Kanaani Z. Bnt162b2 and mrna-1273 COVID-19 vaccine effectiveness against the sars-cov-2 delta variant in qatar. Nat Med. 2021;27(12):2136–2143. doi: 10.1038/s41591-021-01583-4.
    1. Wang W, Wu Q, Yang J, Dong K, Chen X, Bai X, Chen X, Chen Z, Viboud C, Ajelli M, Yu H. Global, regional, and national estimates of target population sizes for COVID-19 vaccination: descriptive study. BMJ. 2020; 371. 10.1136/BMJ.m4704. .
    1. Bucci E, Andreev K, Björkman A, Calogero RA, Carafoli E, Carninci P, Castagnoli P, Cossarizza A, Mussini C, Guerin P. Safety and efficacy of the Russian COVID-19 vaccine: more information needed. The Lancet. 2020;396(10256):53. doi: 10.1016/S0140-6736(20)31960-7.
    1. Barchuk A, Cherkashin M, Bulina A, Berezina N, Rakova T, Kuplevatskaya D, Stanevich O, Skougarevskiy D, Okhotin A. Vaccine effectiveness against referral to hospital after SARS-CoV-2 infection in st. petersburg, russia, during the delta variant surge: a test-negative case-control study. BMC Med. 2022;22(1):312. doi: 10.1186/s12916-022-02509-8.
    1. Barchuk A, Bulina A, Cherkashin M, Berezina N, Rakova T, Kuplevatskaya D, Stanevich O, Skougarevskiy D, Okhotin A. COVID-19 vaccines effectiveness against symptomatic sars-cov-2 during delta variant surge: a preliminary assessment from a case–control study in st. Petersburg, Russia. BMC Public Health. 2022;22(1):1803. doi: 10.1186/s12889-022-14202-9.
    1. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, Kovyrshina AV, Lubenets NL, Grousova DM, Erokhova AS. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021;397(10275):671–681. doi: 10.1016/S0140-6736(21)00234-8.
    1. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, Amoako DG, Everatt J, Bhiman JN, Scheepers C, et al. Early assessment of the clinical severity of the sars-cov-2 omicron variant in south africa: a data linkage study. The Lancet. 2022.
    1. Vandenbroucke JP, Brickley EB, Vandenbroucke-Grauls CM, Pearce N. A test-negative design with additional population controls can be used to rapidly study causes of the sars-cov-2 epidemic. Epidemiology (Cambridge, Mass.) 2020;31(6):836. doi: 10.1097/EDE.0000000000001251.
    1. Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical basis of the test-negative study design for assessment of influenza vaccine effectiveness. Am J Epidemiol. 2016;184(5):345–353. doi: 10.1093/aje/kww064.
    1. Ranzani OT, Hitchings MD, Dorion M, D’Agostini TL, de Paula RC, de Paula OFP, de Moura Villela EF, Torres MSS, de Oliveira SB, Schulz W, et al. Effectiveness of the coronavac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in brazil: test negative case–control study. BMJ. 2021; 374.
    1. Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, Tian Y, Florea A, Aragones M, Tubert JE, et al. Effectiveness of mrna-1273 against delta, mu, and other emerging variants of sars-cov-2: test negative case–control study. BMJ. 2021; 375.
    1. Vandenbroucke JP, Pearce N. Test-negative designs: differences and commonalities with other case-control studies with “other patient” controls. Epidemiology. 2019;30(6):838–44. doi: 10.1097/EDE.0000000000001088.
    1. Bloemenkamp KW, Rosendaal FR, Büller HR, Helmerhorst FM, Colly LP, Vandenbroucke JP. Risk of venous thrombosis with use of current low-dose oral contraceptives is not explained by diagnostic suspicion and referral bias. Arch Intern Med. 1999;159(1):65–70. doi: 10.1001/archinte.159.1.65.
    1. WHO: Evaluation of COVID-19 vaccine effectiveness: interim guidance, 17 march 2021. Technical documents, World Health Organization. 2021.
    1. Ryzhikov A, Ryzhikov E, Bogryantseva M, Usova S, Danilenko E, Nechaeva E, Pyankov O, Pyankova O, Gudymo A, Bodnev S. A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II) Russ J Infect Immun. 2021;11(2):283–96. doi: 10.15789/2220-7619-ASB-1699.
    1. Kozlovskaya LI, Piniaeva AN, Ignatyev GM, Gordeychuk IV, Volok VP, Rogova YV, Shishova AA, Kovpak AA, Ivin YY, Antonova LP. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg Microb Infect. 2021;10(1):1790–1806. doi: 10.1080/22221751.2021.1971569.
    1. Morozov SP, Chernina VY, Blokhin AI, Gombolevskiy VA. Chest computed tomography for outcome prediction in laboratory-confirmed COVID-19: a retrospective analysis of 38,051 cases. Digital Diagn. 2020;1(1):27–36. doi: 10.17816/DD46791.
    1. Christogiannis C, Nikolakopoulos S, Pandis N, Mavridis D. The self-fulfilling prophecy of post-hoc power calculations. Am J Orthod Dentofac Orthop. 2022;161(2):315–317. doi: 10.1016/j.ajodo.2021.10.008.
    1. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O’Connell A-M, et al. COVID-19 vaccine effectiveness against the omicron (b. 1.1. 529) variant. N Eng J Med. 2022.
    1. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, Mizrahi B, Alroy-Preis S, Ash N, Milo R, Huppert A. Protection of bnt162b2 vaccine booster against COVID-19 in Israel. N Engl J Med. 2021;385(15):1393–1400. doi: 10.1056/NEJMoa2114255.
    1. Accorsi EK, Britton A, Fleming-Dutra KE, Smith ZR, Shang N, Derado G, Miller J, Schrag SJ, Verani JR. Association between 3 doses of mrna COVID-19 vaccine and symptomatic infection caused by the sars-cov-2 omicron and delta variants. JAMA. 2022.
    1. Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, Köse Ş, Erdinç FŞ, Akalın EH, Tabak ÖF. Efficacy and safety of an inactivated whole-virion sars-cov-2 vaccine (coronavac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. The Lancet. 2021;398(10296):213–222. doi: 10.1016/S0140-6736(21)01429-X.
    1. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J. Effect of 2 inactivated sars-cov-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45. doi: 10.1001/jama.2021.8565.
    1. Medigeshi GR, Batra G, Murugesan DR, Thiruvengadam R, Chattopadhyay S, Das B, Gosain M, Singh J, Anbalagan A, Shaman H, et al. Sub-optimal neutralisation of omicron (b. 1.1. 529) variant by antibodies induced by vaccine alone or sars-cov-2 infection plus vaccine (hybrid immunity) post 6-months. medRxiv. 2022.
    1. McMenamin ME, Nealon J, Lin Y, Wong JY, Cheung JK, Lau EH, Wu P, Leung GM, Cowling BJ. Vaccine effectiveness of two and three doses of bnt162b2 and coronavac against COVID-19 in Hong Kong. medRxiv. 2022.
    1. Iuliano AD, Brunkard JM, Boehmer TK, Peterson E, Adjei S, Binder AM, Cobb S, Graff P, Hidalgo P, Panaggio MJ. Trends in disease severity and health care utilization during the early omicron variant period compared with previous sars-cov-2 high transmission periods-united states, December 2020–January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(4):146–152. doi: 10.15585/mmwr.mm7104e4.
    1. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. .

Source: PubMed

3
Předplatit