Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity

Guy H E J Vijgen, Nicole D Bouvy, Loes Leenen, Kim Rijkers, Erwin Cornips, Marian Majoie, Boudewijn Brans, Wouter D van Marken Lichtenbelt, Guy H E J Vijgen, Nicole D Bouvy, Loes Leenen, Kim Rijkers, Erwin Cornips, Marian Majoie, Boudewijn Brans, Wouter D van Marken Lichtenbelt

Abstract

Background: Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT.

Methods and findings: Fifteen patients with stable vns therapy (age: 45 ± 10 yrs; body mass index; 25.2 ± 3.5 kg/m(2)) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUV(Mean); 0.55 ± 0.25 versus 0.67 ± 0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001).

Conclusions: VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy.

Trial registration: The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Basal metabolic rate (BMR) during…
Figure 1. Basal metabolic rate (BMR) during active and inactive VNS in relation to BAT activity.
A. Individual responses upon VNS intervention. Notice all but one (marked line) subjects decreased energy expenditure upon deactivation of the VNS (subject that increased energy expenditure also described in Results section). B. Mean group BMR upon VNS intervention. C. The change in energy expenditure (Δ Energy Expenditure) upon VNS intervention (On/Off) correlated to the change in BAT activity. One subject (open dot) showed a high increase in energy expenditure upon VNS intervention. This subject was confirmed as an statistical outlier in the exponential growth equation shown and therefore excluded from the equation. Values shown are means + S.E.M. Significance shown for paired t-test in VNS intervention group consisting of 4 males and six females. * P<0.05
Figure 2. FDG-PET-CT images of intervention group…
Figure 2. FDG-PET-CT images of intervention group and cold exposed subjects.
Transaxial and coronal CT, PET and PET-CT fused images of VNS-On and VNS-Off from a subject in the VNS-On/Off group and images from a subject in the VNS-TN/Cold group during thermoneutral conditions (TN) and cold exposure (Cold). PET-CT image shown with and without Volume-Of-Interest (VOI) cubes for determination of activity. The white line in the coronal image indicates the transaxial slice shown above.
Figure 3. FDG-PET-CT activity of different tissue…
Figure 3. FDG-PET-CT activity of different tissue types upon VNS intervention.
SUVMean values for Brown Adipose Tissue (BAT), all muscle (Muscle), deltoid muscle (Deltoid), biceps muscle (Biceps), triceps muscle (Triceps), erector spinae muscle at the level of vertebrae C7 (C7), T8 (T8), L3 (L3), subcutaneous white adipose tissue (WAT Sc), visceral white adipose tissue (WAT Visc), the liver (Liver) and the brain at the level of the cerebellum (Brain). A. Comparison of activity during VNS-On and VNS-Off. B. Comparison of activity between VNS-On, VNS-Off and VNS-Cold. Values shown are mean + S.E.M. * P<0.05 for paired t-tests between VNS-On and VNS-Off. # P<0.05 for one-way ANOVA with post-hoc Bonferroni correction between VNS-On, VNS-Off and VNS-Cold.

References

    1. Simpson SA, Shaw C, McNamara R (2011) What is the most effective way to maintain weight loss in adults? BMJ 343: d8042.
    1. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84: 277–359.
    1. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, et al. (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360: 1500–1508.
    1. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, et al. (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360: 1518–1525.
    1. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, et al. (2011) Brown adipose tissue in morbidly obese subjects. Plos One 6: e17247.
    1. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, et al. (2011) Brown Adipose Tissue, Whole-Body Energy Expenditure, and Thermogenesis in Healthy Adult Men. Obesity (Silver Spring) 19: 13–16.
    1. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ (2009) BAT: a new target for human obesity? Trends Pharmacol Sci 30: 387–396.
    1. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, et al. (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23: 3113–3120.
    1. Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, et al. (1984) Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309: 163–165.
    1. Mano-Otagiri A, Iwasaki-Sekino A, Nemoto T, Ohata H, Shuto Y, et al. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul Pept 160: 81–90.
    1. Mano-Otagiri A, Ohata H, Iwasaki-Sekino A, Nemoto T, Shibasaki T (2009) Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. J Endocrinol 201: 341–349.
    1. Dedeurwaerdere S, Gilby K, Vonck K, Delbeke J, Boon P, et al. (2006) Vagus nerve stimulation does not affect spatial memory in fast rats, but has both anti-convulsive and pro-convulsive effects on amygdala-kindled seizures. Neuroscience 140: 1443–1451.
    1. Laskiewicz J, Krolczyk G, Zurowski G, Sobocki J, Matyja A, et al. (2003) Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol 54: 603–610.
    1. Kosel M, Schlaepfer TE (2003) Beyond the treatment of epilepsy: new applications of vagus nerve stimulation in psychiatry. CNS Spectr 8: 515–521.
    1. Privitera MD, Welty TE, Ficker DM, Welge J (2002) Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev: CD002896.
    1. Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, et al. (2007) Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond) 31: 1756–1759.
    1. Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R (2002) Weight loss associated with vagus nerve stimulation. Neurology 59: 463–464.
    1. Bodenlos JS, Kose S, Borckardt JJ, Nahas Z, Shaw, et al (2007) Vagus nerve stimulation and emotional responses to food among depressed patients. J Diabetes Sci Technol 1: 771–779.
    1. Bodenlos JS, Kose S, Borckardt JJ, Nahas Z, Shaw D, et al. (2007) Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite 48: 145–153.
    1. Bligh J, Johnson KG (1973) Glossary of terms for thermal physiology. J Appl Physiol 35: 941–961.
    1. van Marken Lichtenbelt WD, Daanen HA, Wouters L, Fronczek R, Raymann RJ, et al. (2006) Evaluation of wireless determination of skin temperature using iButtons. Physiol Behav 88: 489–497.
    1. Kingma B, Frijns A, van Marken Lichtenbelt W (2012) The thermoneutral zone: implications for metabolic studies. Front Biosci (Elite Ed) 4: 1975–1985.
    1. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, et al... (2012) Increase in Brown Adipose Tissue Activity after Weight Loss in Morbidly Obese Subjects. J Clin Endocrinol Metab.
    1. Vosselman MJ, Brans B, van der Lans AA, Wierts R, van Baak MA, et al... (2013) Brown adipose tissue activity after a high-calorie meal in humans. Am J Clin Nutr.
    1. Prechtl JC, Powley TL (1990) The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl) 181: 101–115.
    1. Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444: 854–859.
    1. Ruffin M, Nicolaidis S (1999) Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res 846: 23–29.
    1. Saito M, Minokoshi Y, Shimazu T (1989) Accelerated norepinephrine turnover in peripheral tissues after ventromedial hypothalamic stimulation in rats. Brain Res 481: 298–303.
    1. Perkins MN, Rothwell NJ, Stock MJ, Stone TW (1981) Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289: 401–402.
    1. Saindon CS, Blecha F, Musch TI, Morgan DA, Fels RJ, et al. (2001) Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta. Auton Neurosci 87: 243–248.
    1. Balbo SL, Grassiolli S, Ribeiro RA, Bonfleur ML, Gravena C, et al. (2007) Fat storage is partially dependent on vagal activity and insulin secretion of hypothalamic obese rat. Endocrine 31: 142–148.
    1. Nagase H, Bray GA, York DA (1996) Effect of galanin and enterostatin on sympathetic nerve activity to interscapular brown adipose tissue. Brain Res 709: 44–50.
    1. Nagase H, Nakajima A, Sekihara H, York DA, Bray GA (2002) Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: the involvement of vagal-central nervous system interactions. J Gastroenterol 37 Suppl 14118–127.
    1. Val-Laillet D, Biraben A, Randuineau G, Malbert CH (2010) Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55: 245–252.
    1. Sobocki J, Fourtanier G, Estany J, Otal P (2006) Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery. Surgery 139: 209–216.
    1. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, et al. (2009) High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans: Effects of Cold Exposure and Adiposity. Diabetes 58: 1526–1531.
    1. Vijgen GH, van Marken Lichtenbelt W (2012) Brown adipose tissue: clinical impact of a re-discovered thermogenic organ. Front Biosci Accepted for publication.
    1. Wu C, Cheng W, Xing H, Dang Y, Li F, et al. (2011) Brown adipose tissue can be activated or inhibited within an hour before 18F-FDG injection: a preliminary study with microPET. J Biomed Biotechnol 2011: 159834.
    1. Agrawal A, Nair N, Baghel NS (2009) A novel approach for reduction of brown fat uptake on FDG PET. Br J Radiol 82: 626–631.
    1. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789.

Source: PubMed

3
Předplatit