Functional Anatomy of Non-REM Sleep

Isabel de Andrés, Miguel Garzón, Fernando Reinoso-Suárez, Isabel de Andrés, Miguel Garzón, Fernando Reinoso-Suárez

Abstract

The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3-4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis.

Keywords: NREM sleep homeostasis; caudal hypnogenic system; rostral hypnogenic system; sleep need; slow wave sleep; thalamus–cerebral cortex unit.

Figures

Figure 1
Figure 1
Nocturnal hypnogram of a young man. Modified from Reinoso-Suárez et al. (2010).
Figure 2
Figure 2
Schematic representation of the encephalic NREM sleep-promoting structures. A parasagittal section of cat brain shows a shaded area representing the brain structures where lesion decreases NREM sleep and/or EEG synchronization or stimulation increases NREM sleep. The main connections between these structures and the structures responsible of the organization of wakefulness (encompassed in red line) or REM sleep (blue lines) – with the exception of the efferent hypothalamic and midbrain connections and the brainstem connections from the basal forebrain – are shown. The thalamus–cerebral cortex complex or unit is darker to emphasize that these structures are necessary for the behavioral and bioelectric signs that characterize NREM sleep. AC, anterior commissure; CC, corpus callosum; DCN, deep cerebellar nuclei; Fo, fornix; G7, genu of the facial nerve; IC, inferior colliculus; IO, inferior olive; LV, lateral ventricle; MRF; midbrain reticular formation; MT, medullary tegmentum; OCh, optic chiasm; PGS, periaqueductal gray substance; RPC, caudal pontine reticular nucleus; RPO, oral pontine reticular nucleus; SC, superior colliculus; SC and PN, spinal cord and peripheral nerves; SN, solitary nucleus; TB, trapezoid body. Modified from Reinoso-Suárez et al. (2011).
Figure 3
Figure 3
Thalamic nuclei, cell types, and thalamocortical relationships. The lower part of the figure represents a schematic coronal section of the primate diencephalon and the upper drawing depicts a schematic section of the primary and association cerebral cortices. Thalamic lateral posterior (LP) and ventral posterior (VP) nuclei are represented as examples of high-order and first-order thalamic nuclei, respectively. C, core-type cells; Intr, thalamic intralaminar nuclei; It, GABAergic interneurons; M, matrix-type cells; MD, medial dorsal thalamic nucleus; NR, thalamic reticular nucleus; I–VI, cortical layers. Modified from Reinoso-Suárez et al. (2011).
Figure 4
Figure 4
Schematic representation of the fiber and neuronal organization of the cerebral cortex. The projection neurons, pyramidal neurons in layers II–III, V, and VI, are represented in different colors according to their origin and targets. The two types of interneurons are represented in different colors: (1) the excitatory interneuron, a spiny stellate cell, is in pink; and (2) the inhibitory interneurons are in light green. There are four specific examples of inhibitory interneuron: two dendrite-and tuft-targeting cells [Cajal-Retzius (C-R) and Martinotti (M) neurons], one dendrite targeting cell [double bouquet (DB) neuron], and one axon targeting cell [chandelier (C) neuron]. Afferent fibers from cortical and subcortical origins are represented in different colors and specific distributions. The wide distributions of dopaminergic (DA), serotonergic (5-HT), noradrenergic (NA), histaminergic (His), orexinergic (Orx), and GABAergic (GABA) fibers originating in brainstem, diencephalic, and basal prosencephalic structures are represented by their terminals, as is the topographically organized terminals of the basal forebrain cholinergic (Ach) fibers. Thalamocortical fibers targeting cortical layers I (M-type) and IV (C-type) are also shown. I to VI, cortical layers one to six. Open triangles, excitatory terminals; solid triangles, inhibitory terminals. From Reinoso-Suárez et al. (2011).
Figure 5
Figure 5
Schematic representation of the anatomical bases for the sleep spindles of NREM sleep and the intermediate- to high-voltage theta EEG activity of drowsiness. From Reinoso-Suárez et al. (2011).
Figure 6
Figure 6
Top: microphotographs illustrating the location of the saline and opioid microinjections in two cats injected in the medial nucleus (arrow) of the solitary tract (SOL). Bottom: Bars show the mean duration in minutes spent in the different sleep–wakefulness states during the first hour of recordings in controls (saline, 40 nl) and after morphiceptin (mu opioid agonist) or DPDPE (delta opioid agonist) microinjections (2.4 nmol, 40 nl). Respiratory rate (triangles) in breaths per minute and heart rate (circles) in beats per minute are also shown for each sleep–wakefulness state during the first hour of recordings. Note the decreased respiratory and heart rates in sleep states in comparison with values during wakefulness in the control saline experiments; both opioid treatments produced a further decrease in both autonomic variables. W, wakefulness; D, drowsiness; NREM, non-REM sleep; REM, REM sleep. (After Reinoso-Barbero, 1993).
Figure 7
Figure 7
Activating and synchronizing EEG centers in the pontine tegmentum. (A,C–E) show diagrams of the combined extent of lesions in the pontine tegmentum of cats producing either EEG activation (diagonal dashed lines encircled by heavy dashed lines) or EEG synchronization (horizontal lines encircled by heavy solid lines). (A) Parasagittal section 2 mm from the midline; circled numbers indicate frontal plane levels on the Reinoso-Suárez (1961) atlas corresponding to sections (C–E), respectively. (B) Graph showing the percent of increase in activation (dashed line) and decrease in activation (solid line) relative to the pre-lesion control-based zero for each animal. Note that lesions that produced EEG synchronization are located at the level of the oral pontine reticular nucleus and those that produced EEG activation are located caudal, dorsal, and lateral to this nucleus. BC, brachium conjunctivum; BP, brachium pontis; CP, colliculus inferior; FP, fasciculus longitudinalis medialis; LM, lemniscus medialis; MV, tractus mesencephalicus nervi trigemini; NLL, nucleus lemnisci lateralis; NP, nuclei pontis; NR, nucleus ruber; NRV, nucleus reticularis ventralis; NTR, nucleus corporis trapezoidei; OS, oliva superior; P, tractus pyramidalis; RPC, nucleus reticularis pontis caudalis; RPO, nucleus reticularis pontis oralis; SCV, tractus spinocerebellaris anterior; TD, nucleus tegmenti dorsalis; TR, corpus trapezoideum; TF, tractus tectospinalis. From Camacho-Evangelista and Reinoso-Suárez (1964).
Figure 8
Figure 8
Modifications in the total duration of wakefulness, drowsiness, NREM (slow sleep), and REM (paradoxical) sleep, as well as their episode mean duration and number per recording after different cerebellar lesions. The cats with lesions in the brachium conjunctivum showed a significant decrease of NREM (Slow Wave) and REM (Paradoxical) sleep. In contrast, the cats with lesions in the cerebellar cortex and white matter of the anterior vermis showed a significant decrease of drowsiness and a significant increase in REM sleep. Modified from De Andrés and Reinoso-Suárez (1979).

References

    1. Alam M. N., McGinty D., Szymusiak R. (1995). Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep. Am. J. Physiol. 269, R1240–R1249
    1. Amzica F., Steriade M. (1995). Disconnection of intracortical synaptic linkages disrupts synchronizatrion of a slow oscillation. J. Neurosci. 15, 4658–4677
    1. Andrade K. C., Spoormaker V. I., Dresler M., Wehrle R., Holsboer F., Sämann P. G., Czisch M. (2011). Sleep spindles and hippocampal functional connectivity in human NREM sleep. J. Neurosci. 31, 10331–1033910.1523/JNEUROSCI.5660-10.2011
    1. Andre P., Arrighi P. (2003). Hipnic modulation of cerebellar information processing: implications for the cerebro-cerebellar dialogue. Cerebellum 2, 84–9510.1080/14734220309403
    1. Avendaño C., Stepniewska I., Rausell E., Reinoso-Suárez F. (1990). Segregation and heterogeneity of thalamic cell populations projecting to superficial layers of the posterior parietal cortex: a retrograde tracing study in the cat and monkey. Neuroscience 39, 547–55910.1016/0306-4522(90)90242-V
    1. Bal T., McCormick D. A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J. Physiol. (Lond.) 468, 669–691
    1. Batini C., Moruzzi G., Palestini M., Rossi G. F., Zanchetti A. (1958). Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128, 30–3210.1126/science.128.3314.30
    1. Berlucchi G., Maffei L., Moruzzi G., Strata P. (1964). EEG and behavioral effects elicited by cooling of medulla and pons. Arch. Ital. Biol. 102, 372–392
    1. Bonjean M., Baker T., Lemieux M., Timofeev I., Sejnowski T., Bazhenov M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo. J. Neurosci. 31, 9124–913410.1523/JNEUROSCI.0077-11.2011
    1. Camacho-Evangelista A., Reinoso-Suárez F. (1964). Activating and synchronizing centers in cat brain: electroencephalograms after lesions. Science 146, 268–27010.1126/science.146.3641.268
    1. Camacho-Evangelista A., Reinoso-Suárez F. (1965). “Effects on the EEG of lesions in the tractus brachium conjunctivum,” in 6th International Congress Electroencephalography Clinical Neurophysiology, Vienna, 467–470
    1. Chou T. C., Bjorkum A. A., Gaus S. E., Lu J., Scammell T. E., Saper C. B. (2002). Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22, 977–990
    1. Cirelli C. (2009). The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 10, 549–56010.1038/nrn2683
    1. Cirelli C., Tononi G. (2008). Is sleep essential? PLoS Biol. 6, e216.10.1371/journal.pbio.0060216
    1. Contreras D., Steriade M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622
    1. Cordeau J. P., Mancia M. (1959). Evidence for the existence of an electroencephalographic synchronization mechanism originating in the lower brain stem. Electroencephalogr. Clin. Neurophysiol. 3, 551–564
    1. Corpas I., De Andrés I. (1991). Morphine effects in brainstem transected cats: I. EEG and sleep-wakefulness in the isolated forebrain. Behav. Brain Res. 44, 11–1910.1016/S0166-4328(05)80234-7
    1. Cunchillos J. D., De Andrés I. (1982). Participation of the cerebellum in the regulation of the sleep-wakefulness cycle. Results in cerebellectomized cats. Electroencephalogr. Clin. Neurophysiol. 53, 549–55810.1016/0013-4694(82)90067-0
    1. Dang-Vu T. T., Schabus M., Desseilles M., Albouy G., Boly M., Darsaud A., Gais S., Rauchs G., Sterpenich V., Vandewalle G., Carrier J., Moonen G., Balteau E., Degueldre C., Luxen A., Phillips C., Maquet P. (2008). Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. U.S.A. 105, 15160–1516510.1073/pnas.0801819105
    1. Datta S., MacLean R. R. (2007). Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci. Biobehav. Rev. 31, 775–82410.1016/j.neubiorev.2007.02.004
    1. De Andrés I., Corpas I. (1991). Morphine effects in brainstem-transected cats: II. Behavior and sleep of the decerebrate cat. Behav. Brain Res. 44, 21–2610.1016/S0166-4328(05)80235-9
    1. De Andrés I., Garzón M., Villablanca J. R. (2003). The disconnected brain stem does not support rapid eye movement sleep rebound following selective deprivation. Sleep 26, 419–425
    1. De Andrés I., Gutiérrez-Rivas E., Nava E., Reinoso-Suárez F. (1976). Independence of sleep-wakefulness cycle in an implanted head ‘encephale isole.’ Neurosci. Lett. 2, 13–1810.1016/0304-3940(76)90038-0
    1. De Andrés I., Reinoso-Suárez F. (1979). Participation of the cerebellum in the regulation of the sleep-wakefulness cycle through the superior cerebellar peduncle. Arch. Ital. Biol. 117, 140–163
    1. Dossi R. C., Nuñez A., Steriade M. (1992). Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J. Physiol. 447, 215–434
    1. Eguchi K., Satoh T. (1980). Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat’s solitary tract nucleus. Arch. Ital. Biol. 118, 331–345
    1. Fadiga E., Manzoni T., Sapienza S., Urbano A. (1968). Synchronizing and desynchronizing fastigial influences on the electrocortical activity of the cat, in acute experiments. Electroencephalogr. Clin. Neurophysiol. 24, 330–34210.1016/0013-4694(68)90194-6
    1. Fuentealba P., Steriade M. (2005). The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog. Neurobiol. 75, 125–14110.1016/j.pneurobio.2005.01.002
    1. Gadea-Ciria M., Fuentes J. (1976). Analysis of phasic activities in the lateral rectus muscle of the eyes (PALRE) during paradoxical sleep in chronic cerebellectomized cats. Brain Res. 111, 416–41510.1016/0006-8993(76)90787-3
    1. Gallopin T., Fort P., Eggermann E., Cauli B., Luppi P. H., Rossier J., Audinat E., Mühlethaler M., Serafin M. (2000). Identification of sleep-promoting neurons in vitro. Nature 404, 992–99510.1038/35010109
    1. García-Uría J., De Andrés I., Cunchillos J. D., Reinoso-Suárez F. (1980). “Modification of the sleep-wakefulness cycle after surgical removal of the cerebellar cortex,” in Sleep 1978, eds Popoviciu L., Asgian B., Badiu G. (Basel: Karger Medical and Scientific Publishers; ), 289–292
    1. Garzón M. (1996). Estudio morfofuncional de los núcleos reticular oral y reticular caudal del tegmento pontino como regiones generadoras de sueño paradójico. Doctoral Thesis, Universidad Autónoma de Madrid, Madrid
    1. Giannazzo E., Manzoni T., Raffaele R., Sapienza S., Urbano A. (1968). Changes in the sleep-wakefulness cycle induced by chronic fastigial lesions in the cat. Brain Res. 11, 281–28410.1016/0006-8993(68)90093-0
    1. Golanov E. V., Reis D. J. (2001). Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area. Brain Res. 892, 1–1210.1016/S0006-8993(00)02949-8
    1. Gong H., McGinty D., Guzman-Marin R., Chew K. T., Stewart D., Szymusiak R. (2004). Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J. Physiol. 556, 935–94610.1113/jphysiol.2003.056622
    1. Gottesmann C. (1996). The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci. Biobehav. Rev. 20, 367–38710.1016/0149-7634(95)00055-0
    1. Guglielmino S., Strata P. (1971). Cerebellum and atonia of the desynchronized phase of sleep. Arch. Ital. Biol. 109, 210–217
    1. Guzmán-Marín R., Alam M. N., Szymusiak R., Drucker-Colín R., Gong H., McGinty D. (2000). Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res. 875, 23–3410.1016/S0006-8993(00)02561-0
    1. Gvilia I., Turner A., McGinty D., Szymusiak R. (2006a). Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J. Neurosci. 26, 3037–304410.1523/JNEUROSCI.4827-05.2006
    1. Gvilia I., Xu F., McGinty D., Szymusiak R. (2006b). Homeostatic regulation of sleep: a role for preoptic area neurons. J. Neurosci. 26, 9426–943310.1523/JNEUROSCI.4827-05.2006
    1. Hernández-Peón R. (1962). Sleep induced by localized electrical or chemical stimulation of the forebrain. Electroencephalogr. Clin. Neurophysiol. 14, 423–424
    1. Hess W. R. (1931). Le sommeil. C. R. Soc. Biol. Paris 107, 1333–1360
    1. Hess W. R. (1968). Psychologie in biologisher Sicht, 2 Aufl. Stuttgart: G. Thieme
    1. Hodes R. (1964). Electrocortical desynchronization resulting from spinal block: evidence for synchronizing influences in the cervical cord. Arch. Ital. Biol. 102, 183–196
    1. Huber R., Ghilardi M. F., Massimini M., Tononi G. (2004). Local sleep and learning. Nature 430, 78–8110.1038/nature02663
    1. Iber C., Ancoli-Israel S., Chesson A., Quan S. F. (eds). (2007). “The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification,” 1st Edn Westchester, IL: American Academy of Sleep Medicine
    1. Jahnsen H., Llinás R. (1984). Electrophysiological properties of guinea-pig thalamic neurons: and in vitro study. J. Physiol. (Lond.) 349, 205–226
    1. Ji D., Wilson M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–10710.1038/nn1825
    1. Jiménez-Castellanos J., Reinoso-Suárez F. (1985). Topographical organization of the afferent connections of the principal ventro-medial thalamic nucleus in the cat. J. Comp. Neurol. 236, 297–31410.1002/cne.902360303
    1. Jones B. E. (2009). Glia, adenosine, and sleep. Neuron 61, 156–15710.1016/j.neuron.2009.01.005
    1. Jones E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–60110.1016/S0166-2236(00)01731-8
    1. Jones S., Pfister-Genskow M., Benca R. M., Cirelli C. (2008). Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J. Neurochem. 105, 46–6210.1111/j.1471-4159.2007.05089.x
    1. Jouvet M. (1962). Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch. Ital. Biol. 100, 125–206
    1. Krilowicz B. L., Szymusiak R., McGinty D. (1994). Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic anterior hypothalamic warming. Brain Res. 668, 30–3810.1016/0006-8993(94)90507-X
    1. Krueger J. M., Rector D. M., Roy S., Van Dongen H. P., Belenky B., Panksepp J. (2008). Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 9, 910–91910.1038/nrn2521
    1. Laguzzi R., Reis D. J., Talman W. T. (1984). Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res. 304, 321–32810.1016/0006-8993(84)90336-6
    1. Llinás R., Steriade M. (2006). Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–330810.1152/jn.00166.2006
    1. Madoz P., Reinoso-Suárez F. (1968). Influence of lesions in preoptic region on the states of sleep and wakefulness. Proc. XXIV Int. Cong. Physiol. Sci. 7, 276
    1. Magnes J., Moruzzi G., Pompeiano O. (1961). Synchronization of the EEG produced by low-frequency electrical stimulation of the region of the solitary tract. Arch. Ital. Biol. 99, 33–67
    1. Mancia M., Meulders M., Santibanez H. G. (1959). Synchronisation de l’électroencéphalogramme provoquée par la stimulation visuelle répétitive chez le chat “médiopontin prétrigéminal.” Arch. Int. Physiol. Biochem. 67, 661–67010.3109/13813455909067179
    1. Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–61310.1038/nature05278
    1. McGinty D., Szymusiak R. (2000). The sleep-wake switch: a neuronal alarm clock. Nat. Med. 6, 510–51110.1038/74988
    1. McGinty D. J., Sterman M. B. (1968). Sleep suppression after basal forebrain lesions in the cat. Science 160, 1253–125510.1126/science.160.3833.1253
    1. Mignot E., Huguenard J. R. (2009). Resting our cortices by going DOWN to sleep. Neuron 63, 719–72110.1016/j.neuron.2009.09.008
    1. Moreno-Balandrán E., Garzón M., Bódalo C., Reinoso-Suárez F., De Andrés I. (2008). Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur. J. Neurosci. 28, 331–34110.1111/j.1460-9568.2008.06334.x
    1. Morrison R. S., Dempsey E. W. (1942). A study of thalamo-cortical relations. Am. J. Physiol. 135, 282–302
    1. Moruzzi G. (1958). “Relations between the cerebellum and other central structures. Effects on the electrocorticogram,” in The Physiology and Pathology of the Cerebellum, eds Dow H. R., Moruzzi G. (Minneapolis: The University of Minnesota Press; ), 323–333
    1. Moruzzi G. (1972). The sleep-waking cycle. Ergeb. Physiol. 64, 1–165
    1. Nauta W. J. H. (1946). Hypothalamic regulation of sleep in rats. An experimental study. J. Neurophysiol. 9, 285–316
    1. Nuñez A., Curró Dossi R., Contreras D., Steriade M. (1992). Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat. Neuroscience 48, 75–8510.1016/0306-4522(92)90339-4
    1. Núñez-Molina A., Amzica F. (2004). Mecanismos de generación de las oscilaciones lentas del electroencefalograma durante el sueño. Rev. Neurol. 39, 628–633
    1. Oka H., Ito J., Kawamura M. (1982). Identification of thalamo-cortical neurons responsible for cortical recruiting and spindling activities in cats. Neurosci. Lett. 33, 13–1810.1016/0304-3940(82)90122-7
    1. Paz C., Reygadas E., Fernández-Guardiola A. (1982). Sleep alterations following total cerebellectomy in cats. Sleep 5, 218–226
    1. Peigneux P., Laureys S., Fuchs S., Collette F., Perrin F., Reggers J., Phillips C., Degueldre C., Del Fiore G., Aerts J., Luxen A., Maquet P. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–54510.1016/j.neuron.2004.10.007
    1. Pompeiano O., Swett J. E. (1962). EEG behavioural manifestation of sleep induced by cutaneous nerve stimulation in normal cats. Arch. Ital. Biol. 100, 311–342
    1. Puizillout J. J., Ternaux J. P., Foutz A. S., Dell P. (1973). Slow wave sleep with phasic discharges. Triggering by vago-aortic stimulation. Rev. Electroencephalogr. Neurophysiol. Clin. 3, 21–3710.1016/S0370-4475(73)80022-X
    1. Raffaele R., Sapienza S., Urbano A., Ventura M. (1971). Changes in the sleep-wakefulness rhythm after chronic bilateral interruption of the middle cerebellar peduncles in the cat. Brain Res. 26, 195–19910.1016/0006-8993(71)90557-9
    1. Rai S., Kumar S., Alam M. A., Szymusiak R., McGinty D., Alam M. N. (2010). A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rat. Neuroscience 167, 40–4810.1016/j.neuroscience.2010.01.044
    1. Rasch B., Büchel C., Gais S., Born J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–142910.1126/science.1138581
    1. Rector D. M., Schei J. L., Van Dongen H. P., Belenky G., Krueger J. M. (2009). Physiological markers of local sleep. Eur. J. Neurosci. 29, 1771–177810.1111/j.1460-9568.2009.06717.x
    1. Rector D. M., Topchiy I. A., Carter K. M., Rojas M. J. (2005). Local functional state differences between rat cortical columns. Brain Res. 1047, 45–5510.1016/j.brainres.2005.04.002
    1. Reinoso-Barbero F. (1993). Microestimulación con opiaceos en la region del tracto solitario. Efectos sobre el ciclo vigilia-sueño e interacción con efectos vegetativos. Doctoral Thesis, Universidad Autónoma de Madrid, Madrid
    1. Reinoso-Barbero F., De Andrés I. (1995). Effects of opioid microinjections in the nucleus of the solitary tract on the sleep-wakefulness cycle states in cats. Anesthesiology 82, 144–15210.1097/00000542-199501000-00019
    1. Reinoso-Suárez F. (1954). Die Auswirkungen der Ausschaltung eines Nucleus ruber auf die Hirnrinde (Electroencephalographische Untersuchungen an der Katze). Dtsch. Z. Nervenheilk 172, 201–21910.1007/BF00244175
    1. Reinoso-Suárez F. (1961). Topographischer Hirnatlas der Katze für Experimental Physiologische Untersuchungen. Darmstadt: Merck AG
    1. Reinoso-Suárez F. (1992). “Considerations on thalamic and pontine sleep mechanisms,” in Fundamental Neurobiology, ed. Velluti R. (Montevideo: Work; ), 59–71
    1. Reinoso-Suárez F. (1993). Algunas consideraciones sobre la anatomía del sueño. An. Anat. 39, 165–181
    1. Reinoso-Suárez F., De Andrés I. (1976). Brain structures and sleep. Trab. Inst. Cajal Invest. Biol. 68, 39–68
    1. Reinoso-Suárez F., De Andrés I., Garzón M. (2011). Functional anatomy of the sleep-wakefulness cycle: wakefulness. Adv. Anat. Embryol. Cell. Biol. 208, 1–12810.1007/978-3-642-14626-8_1
    1. Reinoso-Suárez F., De Andrés I., Rodrigo-Angulo M. L., Garzón M. (2001). Brain structures and mechanisms involved in the generation of REM sleep. Sleep Med. Rev. 5, 63–7810.1053/smrv.2000.0136
    1. Reinoso-Suárez F., de la Roza C., Rodrigo-Angulo M. L., de Andrés I., Núñez A., Garzón M. (2010). “GABAergic mechanisms in the ventral oral pontine tegmentum – the REM sleep induction site- in the modulation of sleep-wake states,” in GABA and Sleep, ed. Monti J. M., Pandi-Perumal S. R., Möhler H. (Basel: Birkhauser-Verlag; ), 233–252
    1. Reinoso-Suárez F., Fairén A., Martínez-Moreno E., Nava B. E., Pasquier D. A. (1977). Ascending projections from the brain stem. Med. Biol. Pap. 1, 233–246
    1. Reinoso-Suárez F., Sierra G., Camacho A. (1962). Efectos de lesiones en formación reticular protuberancial e istmo ponto-mesencefálico sobre el EEG del gato (Su participación en el mecanismo del sueño). Rev. Med. Univ. Navarra 6, 1–19
    1. Rossi G. F., Minobe K., Candia O. (1963). An experimental study of the hypnogenic mechanisms of the brain stem. Arch. Ital. Biol. 101, 470–492
    1. Rubio-Garrido P., Pérez-de-Manzo F., Porrero C., Galazo M. J., Clascá F. (2009). Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex 19, 2380–239510.1093/cercor/bhn259
    1. Saper C. B. (1995). “Central autonomic system,” in The Rat Nervous System, ed. Paxinos G. (San Diego: Academic Press; ), 107–135
    1. Saper C. B., Chou T. C., Scammell T. E. (2001). The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–73110.1016/S0166-2236(00)02002-6
    1. Sasaki K., Kawaguchi S., Oka H., Sakai M., Mizuno N. (1976). Electrophysiological studies on the cerebello cerebral projections in monkeys. Exp. Brain Res. 24, 495–50710.1007/BF00234966
    1. Sforza E., Montagna P., Tinuper P., Cortelli P., Avoni P., Ferrillo F., Petersen R., Gambetti P., Lugaresi E. (1995). Sleep-wake cycle abnormalities in fatal familial insomnia. Evidence of the role of the thalamus in sleep regulation. Electroencephalogr. Clin. Neurophysiol. 94, 398–40510.1016/0013-4694(94)00318-F
    1. Sherin J. E., Elmquist J. K., Torrealba F., Saper C. B. (1998). Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18, 4705–4721
    1. Sherin J. E., Shiromani P. J., McCarley R. W., Saper C. B. (1996). Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–21910.1126/science.271.5246.216
    1. Siegel J. M., Tomaszewsky K. S., Nienhuis R. (1986). Behavioral states in the chronic medullary and midpontine cat. Electroencephalogr. Clin. Neurophysiol. 63, 274–28810.1016/0013-4694(86)90095-7
    1. Starzl T. E., Magoun H. W. (1951). Organization of the diffuse thalamic projection system. J. Neurophysiol. 14, 133–146
    1. Steininger T. L., Gong H., McGinty D., Szymusiak R. (2001). Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J. Comp. Neurol. 429, 638–65310.1002/1096-9861(20010122)429:4<638::AID-CNE10>;2-Y
    1. Steriade M., Deschenes M. (1988). “Intrathalamic and brainstem-thalamic networks envolved in resting and alert status,” in Cellular Thalamic Mechanisms, eds Bentivoglio M., Spreafico R. (New Cork: Elsevier; ), 37–62
    1. Steriade M., Deschênes M., Domich L., Mulle C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J. Neurophysiol. 54, 1473–1497
    1. Steriade M., Dossi R. C., Nuñez A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 10, 3200–3217
    1. Steriade M., McCarley R. W. (1990). Brainstem Control of Wakefulness and Sleep. New York: Plenum
    1. Steriade M., Nuñez A., Amzica F. (1993). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13, 3266–3283
    1. Steriade M., Oakson G., Ropert N. (1982). Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp. Brain Res. 46, 37–5110.1007/BF00238096
    1. Sterman M. B., Clemente C. D. (1962). Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp. Neurol. 6, 103–11710.1016/0014-4886(62)90080-8
    1. Szymusiak R., Alam N., Steininger T. L., McGinty D. (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 803, 178–18810.1016/S0006-8993(98)00631-3
    1. Szymusiak R., Gvilia I., McGinty D. (2007). Hypothalamic control of sleep. Sleep Med. 8, 291–30110.1016/j.sleep.2007.03.013
    1. Szymusiak R., McGinty D. (1986). Sleep suppression following kainic acid-induced lesions of the basal forebrain. Exp. Neurol. 94, 598–61410.1016/0014-4886(86)90240-2
    1. Timofeev I., Steriade M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168
    1. Ursin R., Sterman M. B. (1981). A Manual for Standardized Scoring of Sleep and Waking States in the Adult Cat. Los Angeles: University of California Brain Information Service
    1. Uschakov A., Gong H., McGinty D., Szymusiak R. (2006). Sleep-active neurons in the preoptic area project to the hypothalamic paraventricular nucleus and perifornical lateral hypothalamus. Eur. J. Neurosci. 23, 3284–329610.1111/j.1460-9568.2006.04860.x
    1. Valdés-Cruz A., Magdaleno-Madrigal V. M., Martínez-Vargas D., Fernández-Mas R., Almazán-Alvarado S. (2008). Long-term changes in sleep and electroencephalographic activity by chronic vagus nerve stimulation in cats. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 828–83410.1016/j.pnpbp.2007.12.020
    1. Vassalli A., Dijk D.-J. (2009). Sleep function: current questions and new approaches. Eur. J. Neurosci. 29, 1830–184110.1111/j.1460-9568.2009.06767.x
    1. Velayos J. L., Jiménez-Castellanos J., Jr., Reinoso-Suárez F. (1989). Topographical organization of the projections from the reticular thalamic nucleus to the intralaminar and medial thalamic nuclei in the cat. J. Comp. Neurol. 279, 457–46910.1002/cne.902790310
    1. Villablanca J. R. (1965). The electrocorticogram in the chronic “cerveau isolé” of the cat. Electroencephalogr. Clin. Neurophysiol. 19, 576–58610.1016/0013-4694(65)90243-9
    1. Villablanca J. R. (1966). Behavioral and polygraphic study of “sleep” and “wakefulness” in chronic decerebrate cats. Electroencephalogr. Clin. Neurophysiol. 21, 562–57710.1016/0013-4694(66)90175-1
    1. Villablanca J. R. (1972). Permanent reduction in sleep after removal of cerebral cortex and striatum in cats. Brain Res. 36, 463–46810.1016/0006-8993(72)90756-1
    1. Villablanca J. R. (1974). “Role of the thalamus in sleep control: sleep-wakefulness studies in chronic diencephalic and athalamic cats,” in Basic Sleep Mechanisms, eds Petre-Quadens O., Schlag J. (New York: Academic; ), 51–81
    1. Villablanca J. R. (2004). Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res. 13, 179–20810.1111/j.1365-2869.2004.00412.x
    1. Viñes-Morros R. (1959). Vias trigeminales y actividad bioeléctrica cerebral. An. Anat. 10, 507–527
    1. von Economo C. (1930). Sleep as a problem of localization. J. Nerv. Ment. Dis. 71, 249–25910.1097/00005053-193003000-00001
    1. Vyazovskiy V. V., Olcese U., Lazimy Y. M., Faraguna U., Esser S. K., Williams J. C., Cirelli C., Tononi G. (2009). Cortical firing and sleep homeostasis. Neuron 63, 865–87810.1016/j.neuron.2009.08.024
    1. Yang Q. Z., Hatton G. I. (1997). Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res. 773, 162–17210.1016/S0006-8993(97)00932-3
    1. Yoshida K., McCormack S., España R. A., Crocker A., Scammell T. E. (2006). Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–86110.1002/cne.20859
    1. Zarranz J., Reinoso-Suárez F. (1971). The pontine tegmentum and sleep-wakefulness states. XXV Internat. Cong. Physiol. Sci. Munich, 618

Source: PubMed

3
Předplatit