Targeted therapy with a selective BCL-2 inhibitor in older patients with acute myeloid leukemia

Elisabete do Vale Campos, Ricardo Pinto, Elisabete do Vale Campos, Ricardo Pinto

Abstract

Background: Older patients with acute myeloid leukemia are particularly difficult to treat, as they have a high risk of comorbidities, poor performance status and less tolerability to chemotherapy, as well as a more aggressive disease biology, responsible for the resistance to treatment. There is a need to explore novel therapeutic agents that are more effective and tolerable. Venetoclax, a BCL-2 inhibitor is a promising agent, as BCL-2 overexpression is present in 84% of acute myeloid leukemia patients at diagnosis and 95% of patients at relapse and has been associated with leukemia cell survival, chemotherapy resistance and poor prognosis.

Objective: To review the available data about venetoclax in acute myeloid leukemia and how it can influence the treatment in older patients.

Methods: Using the Pubmed database, we selected 29 articles published within the last 15 years, considering preclinical and clinical trials and review studies that combined venetoclax with acute myeloid leukemia.

Results: Venetoclax has demonstrated promising results in preclinical and clinical trials, especially in patients with poor prognosis and the IDH mutation, with an excellent side-effect profile. However, resistance seems to develop rapidly with venetoclax monotherapy, because of antiapoptotic escape mechanisms.

Conclusions: While the results with the use of venetoclax seem encouraging, it is not likely that targeting a single pathway will result in long-term disease control. The solution includes the use of combined therapy to block resistance mechanisms and enhance apoptosis, by reducing MCL-1, increasing BIM or inhibiting the complex IV in the mitochondria.

Keywords: ABT-199; AML; BCL-2; BH3-mimetics; Target therapy; Venetoclax.

Copyright © 2018 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

Figures

Figure 1
Figure 1
Flow diagram of the included studies selection.

References

    1. 2017. Clinical manifestations, pathologic features, and diagnosis of acute myeloid leukemia [Internet] Available from: .
    1. 2017. Molecular genetics of acute myeloid leukemia [Internet] Available from: .
    1. Rowe J., Tallman M.S., How I. treat acute myeloid leukemia. Blood. 2010;116(17):3147–3156.
    1. Godwin J., Smith S.E. Acute myeloid leukemia in the older patient. Crit Rev Oncol/Hematol. 2003;48S:S17–S26.
    1. Deschler B., Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–2107.
    1. Lichtman M., Rowe J.M. The relationship of patient age to the pathobiology of the clonal myeloid diseases. Sem Oncol. 2004;31(2):185–197.
    1. Shafer D., Grant S. Update on rational targeted therapy in AML. Blood Rev. 2016;30(4):275–283.
    1. Thein M., Ershler W.B., Jemal A., Yates W., Baer J.M.R. Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over three decades. Cancer. 2013;119(15):2720–2727.
    1. Amadori S., Principe M.I., Venditti A. Advances in the treatment of elderly and frail patients with acute myeloid leukemia. Curr Opin Oncol. 2014;26(6):663–669.
    1. Erba H. Has there been progress in the treatment of older patients with acute myeloid leukemia? Best Pract Res Clin Haematol. 2010;23:495–501.
    1. Creutzig U., Zimmermann M., Reinhardt D., Rasche M., Neuhoff Cv, Alpermann T. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 2016;122(24):3821–3830.
    1. Lazarevic V., Horstedt A.-S., Johansson B., Antunovic P., Billstrom R., Derolf A. Incidence prognostic significance of karyotypic subgroups in older patients with acute myeloid leukemia: the Swedish population-based experience. Blood Cancer J. 2014;4:e188.
    1. Büchner T., Hiddemann W., Berdel W., Wörmann B., Schoch C., Löffler H. Acute myeloid leukemia: treatment over 60. Rev Clin Exp Hematol. 2002;(1):46–59. discussion 86–7.
    1. Tsai C.H., Hou H.-A., Tang J.-L., Liu C.-Y., Lin C.-C., Chou W.-C. Genetic alterations and their clinical implications in older patients with acute myeloid leukemia. Leukemia. 2016;30(7):1485–1492.
    1. Moon J.H., Sohna S.K., Leeb M.-H., Jangc J.H., Kimc K., Jungc C. BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leuk Res. 2010;34(2):166–172.
    1. Medinger M., Lengerke C., Passweg J. Novel prognostic and therapeutic mutations in acute myeloid leukemia. Cancer Genom Proteom. 2016;13(5):317–329.
    1. Saygin C., Carraway H.E. Emerging therapies for acute myeloid leukemia. J Hematol Oncol. 2017;10(1):93.
    1. Kadia T.M., Ravandi F., Cortes J., Kantarjian H. New drugs in acute myeloid leukemia. Ann Oncol. 2016;27(5):770–778.
    1. Tallman M.S., Gilliland D.G., Rowe J.M. Drug therapy for acute myeloid leukemia. Blood. 2005;106(4):1154–1163.
    1. Bose P., Grant S. Rational combinations of targeted agents in AML. J Clin Med. 2015;4(4):634–664.
    1. Hotchkiss R.S., Strasser A., McDunn J.E., Swanson P.E. Cell death. N Engl J Med. 2009;361(16):1570–1583.
    1. Hata A.N., Engelman J.A., Faber A.C. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015;5(5):475–487.
    1. Besbes S., Mirshahi M., Pocard M., Billard C. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget. 2015;6(15):12862–12871.
    1. Gibson C.J., Davids M.S. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015;21(22):5021–5029.
    1. Pullarkat V., Newman E.M. BCL2 inhibition by venetoclax: targeting the Achilles’ heel of the acute myeloid leukemia stem cell? Cancer Discov. 2016;6(10):1082–1083.
    1. Pan R., Hogdal L.J., Benito J.M., Bucci D., Han L., Borthakur G. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2013;4(3):362–375.
    1. Kontro M., Kumar A., Majumder M.M., Eldfors S., Parsons A., Pemovska T. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia. 2016;31(2):301–309.
    1. Niu X., Wang G., Wang Y., Caldwell J.T., Edwards H., Xie C. Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia. 2014;28(7):1557–1560.
    1. Konopleva M., Pollyea D.A., Potluri J., Chyla B., Hogdal L., Busman T. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–1117.
    1. Chan S.M., Thomas D., Corces-Zimmerman M.R., Xavy S., Rastogi S., Hong W.-J. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21(2):178–184.
    1. Verma A., Steidl U. A synthetic lethal approach targeting mutant isocitrate dehydrogenase in acute myeloid leukemia. Nat Med. 2015;21(2):113–114.
    1. Zhao J., Niu X., Li X., Edwards H., Wang G., Wang Y. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7(23):34785–34799.
    1. Schwartz J., Niu X., Walton E., Hurley L., Lin H., Edwards H. Synergistic anti-leukemic interactions between ABT-199 and panobinostat in acute myeloid leukemia ex vivo. Am J Transl Res. 2016;8(9):3893–3902.
    1. Niu X., Zhao J., Ma J., Xie C., Edwards H., Wang G. Binding of released Bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML Cells. Clin Cancer Res. 2016;22(17):4440–4451.
    1. Lin K.H., Winter P.S., Xie A., Roth C., Martz C.A., Stein E.M. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696.
    1. Luedtke D.A., Niu X., Pan Y., Zhao J., Liu S., Edwards H. Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther. 2017;2:17012.
    1. Bogenberger J., Whatcott C., Hansen N., Delman D., Shi C.X., Kim W. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8(63):107206–107222.
    1. Xie S., Jiang H., Zhai X-w, Wei F., Wang S-d, Ding J. Antitumor action of CDK inhibitor LS-007 as a single agent and in combination with ABT-199 against human acute leukemia cells. Acta Pharmacol Sin. 2016;37:1481–1489.
    1. Su Y., Li X., Ma J., Zhao J., Liu S., Wang G.<ET-AL. Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol. 2018;148:13–26.
    1. Lehmann C., Friess T., Birzele F., Kiialainen A., Dangl M. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. J Hematol Oncol. 2016;9(1):50.
    1. Knorr K., Schneider P., Meng X., Dai H., Smith B., Hess A. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Diff. 2015;22:2133–2142.
    1. Ruvolo P., Ruvolo V.R., Benton C.B., AlRawi A., Burks J.K., Schober W. Combination of galectin inhibitor GCS-100 and BH3 mimetics eliminates both p53 wild type and p53 null AML cells. Biochim Biophys Acta. 2016;1863(4):562–571.
    1. Teh T.C., Nguyen N.Y., Moujalled D.M., Segal D., Pomilio G., Rijal S. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia. 2018;32(2):303–312.
    1. Lin T.L., Strickland S.A., Fiedler W., Walter R.B., Hou J.-Z., Roboz G.J. Phase Ib/2 study of venetoclax with low-dose cytarabine in treatment-naive patients age ≥65 with acute myelogenous leukemia. J Clin Oncol. 2016;34(15 Suppl.) 7007.
    1. Bogenberger J.M., Delman D., Hansen N., Valdez R., Fauble V., Mesa R.A. Ex vivoactivity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma. 2014;56(1):226–229.
    1. DiNardo C.D., Pratz K.W., Letai A., Jonas B.A., Wei A.H., Thirman M. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–228.
    1. Skrtic M., Sriskanthadevan S., Jhas B., Gebbia M., Wang X., Wang Z. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20(5):674–688.
    1. Reed G.A., Schiller G.J., Kambhampati S., Tallman M.S., Douer D., Minden M.D. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016;5(11):3031–3040.

Source: PubMed

3
Předplatit