Combination regimens with PD-1/PD-L1 immune checkpoint inhibitors for gastrointestinal malignancies

Dongxu Wang, Jianzhen Lin, Xu Yang, Junyu Long, Yi Bai, Xiaobo Yang, Yilei Mao, Xinting Sang, Samuel Seery, Haitao Zhao, Dongxu Wang, Jianzhen Lin, Xu Yang, Junyu Long, Yi Bai, Xiaobo Yang, Yilei Mao, Xinting Sang, Samuel Seery, Haitao Zhao

Abstract

Gastrointestinal (GI) malignant neoplasms have a high global incidence and treatment prospects for patients with advanced GI tumors are dismal. PD-1/PD-L1 inhibitors emerged as a frontline treatment for several types of cancer. However, the shortcomings of PD-1/PD-L1 inhibitors have been observed, including low objective response rates and acquired tumor resistance, especially in patients receiving PD-1/PD-L1 inhibitors as a single treatment. Accumulating evidence from clinical trials increasingly suggests that combined immunotherapies enhance therapeutic responses in patients with malignances, especially for GI tumors which have a complex matrix, and significant molecular and immunological differences. Preclinical and clinical studies suggest there are advantages to combined immunological regimens, which represents the next logical step in this field, although further research is necessary. This literature review explores the current limitations of monotherapies, before critically discussing the rationale behind combination regimens. Then, we provide a summary of the clinical applications for gastrointestinal cancers.

Keywords: Clinical application; Clinical trial; Combination immunotherapy; Gastrointestinal malignancies; Immune checkpoint inhibitor; PD-1/PD-L1 blockade; Rationale.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Limitations of PD-1/L1 blockade monotherapy and advantages of combination immunotherapy. There are currently many limitations of single-drug therapy with PD-1 inhibitors, including the five aspects shown above, but combined immunotherapy may help to solve some of the limitations of single-drug therapy. Specific combination immunotherapy strategies include combined radiotherapy, chemotherapy, targeted therapy, and another related immunotherapy
Fig. 2
Fig. 2
Combination strategy in tumor immune circulation. As described in the cancer-immunity cycle, there are three main stages involving the presentation of tumor cell antigen by the APC cells, primary activation of T cells in the lymph node, and migration of cytotoxic T cells from the vessel to kill the tumor cells. Several other types of antitumor therapy, such as radiotherapy, chemotherapy, another immunotherapy, and targeted therapy, can participate in the cancer-immunity cycle by destroying the tumor matrix, increasing antigen exposure, removing the immunosuppressive factors, promoting the infiltration of T cells, etc.

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
    1. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4(14):261. doi: 10.21037/atm.2016.04.01.
    1. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. doi: 10.3389/fphar.2017.00561.
    1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394.
    1. Bindea G, Mlecnik B, Angell HK, Galon J. The immune landscape of human tumors: implications for cancer immunotherapy. Oncoimmunology. 2014;3(1):e27456. doi: 10.4161/onci.27456.
    1. Hazama S, Tamada K, Yamaguchi Y, Kawakami Y, Nagano H. Current status of immunotherapy against gastrointestinal cancers and its biomarkers: perspective for precision immunotherapy. Ann Gastroenterol Surg. 2018;2(4):289–303. doi: 10.1002/ags3.12180.
    1. Long J, Lin J, Wang A, Wu L, Zheng Y, Yang X, Wan X, Xu H, Chen S, Zhao H. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy. J Hematol Oncol. 2017;10(1):146. doi: 10.1186/s13045-017-0511-2.
    1. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99(19):12293–12297. doi: 10.1073/pnas.192461099.
    1. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175(2):313–326. doi: 10.1016/j.cell.2018.09.035.
    1. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–6505.
    1. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, Mcdermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. 2012.
    1. Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, et al. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: results from the CA209–003 study. J Clin Oncol. 2018;36(17):1675–1684. doi: 10.1200/JCO.2017.77.0412.
    1. Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597. doi: 10.3389/fimmu.2017.01597.
    1. Ma W, Gilligan BM, Yuan J, Li T. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol. 2016;9(1):47. doi: 10.1186/s13045-016-0277-y.
    1. Wang Q, Wu X. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol. 2017;46:210–219. doi: 10.1016/j.intimp.2017.03.015.
    1. Flynn Michael J., Larkin James M.G. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opinion on Pharmacotherapy. 2017;18(14):1477–1490. doi: 10.1080/14656566.2017.1369956.
    1. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–168. doi: 10.1056/NEJMra1703481.
    1. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi: 10.1056/NEJMoa1200690.
    1. Sandigursky S, Mor A. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Curr Rheumatol Rep. 2018;20(10):65. doi: 10.1007/s11926-018-0770-0.
    1. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60. doi: 10.1016/j.ctrv.2016.02.001.
    1. Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119. doi: 10.1093/annonc/mdx225.
    1. Chen JH, Pezhouh MK, Lauwers GY, Masia R. Histopathologic features of colitis due to immunotherapy with anti-PD-1 antibodies. Am J Surg Pathol. 2017;41(5):643–654. doi: 10.1097/PAS.0000000000000829.
    1. Dougan M. Checkpoint blockade toxicity and immune homeostasis in the gastrointestinal tract[J]. Front Immunol. 2017;8:1547. 10.3389/fimmu.2017.01547.
    1. Hofmann L, Forschner A, Loquai C, Goldinger SM, Zimmer L, Ugurel S, Schmidgen MI, Gutzmer R, Utikal JS, Göppner D. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:190–209. doi: 10.1016/j.ejca.2016.02.025.
    1. Moslehi JJ, Salem J-E, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391(10124):933. doi: 10.1016/S0140-6736(18)30533-6.
    1. Sato K, Akamatsu H, Murakami E, Sasaki S, Kanai K, Hayata A, Tokudome N, Akamatsu K, Koh Y, Ueda H, et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer (Amsterdam, Neth.) 2018;115:71–74. doi: 10.1016/j.lungcan.2017.11.019.
    1. Milano G. Resistance to immunotherapy: clouds in a bright sky. Invest New Drugs. 2017;35(5):649–654. doi: 10.1007/s10637-017-0456-x.
    1. Beaver Julia A, Hazarika Maitreyee, Mulkey Flora, Mushti Sirisha, Chen Huanyu, He Kun, Sridhara Rajeshwari, Goldberg Kirsten B, Chuk Meredith K, Chi Dow-Chung, Chang Jennie, Barone Amy, Balasubramaniam Sanjeeve, Blumenthal Gideon M, Keegan Patricia, Pazdur Richard, Theoret Marc R. Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: a US Food and Drug Administration pooled analysis. The Lancet Oncology. 2018;19(2):229–239. doi: 10.1016/S1470-2045(17)30846-X.
    1. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–829. doi: 10.1056/NEJMoa1604958.
    1. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501. doi: 10.1038/ncomms10501.
    1. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A, Soria JC. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 2017;23(8):1920–1928. doi: 10.1158/1078-0432.CCR-16-1741.
    1. Saada-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, Even C, Fayette J, Guigay J, Loirat D, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605–1611. doi: 10.1093/annonc/mdx178.
    1. Shinozaki T, Iwami E, Ikemura S, Matsuzaki T, Nakajima T, Hashimoto K, Terashima T. A case of pulmonary adenocarcinoma showing rapid progression of peritoneal dissemination after immune checkpoint inhibitor therapy. BMC Cancer. 2018;18(1):620. doi: 10.1186/s12885-018-4549-5.
    1. Ferrara R, Caramella C, Texier M, et al. 1306PDHyperprogressive disease (HPD) is frequent in non-small cell lung cancer (NSCLC) patients (pts) treated with anti PD1/PD-L1 monoclonal antibodies (IO)[J]. Ann Oncol. 2017;28:mdx380.009. 10.1093/annonc/mdx380.009.
    1. Kato Shumei, Goodman Aaron, Walavalkar Vighnesh, Barkauskas Donald A., Sharabi Andrew, Kurzrock Razelle. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clinical Cancer Research. 2017;23(15):4242–4250. doi: 10.1158/1078-0432.CCR-16-3133.
    1. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275. doi: 10.1038/nrc.2016.36.
    1. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563. doi: 10.1038/nature14011.
    1. Tremblay-Lemay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol. 2018;11(1):46. doi: 10.1186/s13045-018-0589-1.
    1. Tray N, Weber JS, Adams S. Predictive biomarkers for checkpoint immunotherapy: current status and challenges for clinical application. Cancer Immunol Res. 2018;6(10):1122–1128. doi: 10.1158/2326-6066.CIR-18-0214.
    1. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500. doi: 10.1056/NEJMc1713444.
    1. Berntsson J, Larsson A, Nodin B, Eberhard J, Jirstrom K. Prognostic impact of PD-L1 and PD-1 expression by primary tumor location in colorectal cancer. J Clin Oncol. 2018;36(4_suppl):628. doi: 10.1200/JCO.2018.36.4_suppl.628.
    1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–998. doi: 10.1038/ni1102-991.
    1. Chen D, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012.
    1. Coulie PG, Van BDE, Van PDB, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–146. doi: 10.1038/nrc3670.
    1. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–2171. doi: 10.1158/0008-5472.CAN-11-3687.
    1. Ok CY, Young KH. Checkpoint inhibitors in hematological malignancies. J Hematol Oncol. 2017;10(1):103. doi: 10.1186/s13045-017-0474-3.
    1. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550. doi: 10.1038/s41591-018-0014-x.
    1. Galon Jérôme, Bruni Daniela. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews Drug Discovery. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y.
    1. Galon Jérôme, Bruni Daniela. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews Drug Discovery. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y.
    1. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–1269. doi: 10.1016/j.immuni.2016.06.001.
    1. Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother. 2013;62(2):203–216. doi: 10.1007/s00262-012-1388-0.
    1. Zhang B, Wu Q, Zhou YL, Guo X, Ge J, Fu J. Immune-related adverse events from combination immunotherapy in cancer patients: a comprehensive meta-analysis of randomized controlled trials. Int Immunopharmacol. 2018;63:292–298. doi: 10.1016/j.intimp.2018.08.014.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030.
    1. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combination immunotherapy: a road map. J Immunother Cancer. 2017;5:16. doi: 10.1186/s40425-017-0218-5.
    1. Xu C, Chen YP, Du XJ, Liu JQ, Huang CL, Chen L, Zhou GQ, Li WF, Mao YP, Hsu C, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. 2018;363:k4226. doi: 10.1136/bmj.k4226.
    1. Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol. 2018;96(1):21–33. doi: 10.1111/imcb.1003.
    1. Hellmann MD, Friedman CF, Wolchok JD. Combinatorial cancer immunotherapies. Adv Immunol. 2016;130:251. doi: 10.1016/bs.ai.2015.12.005.
    1. Pérez-Ruiz Elisabeth, Etxeberria Iñaki, Rodriguez-Ruiz Maria E., Melero Ignacio. Anti-CD137 and PD-1/PD-L1 Antibodies En Route toward Clinical Synergy. Clinical Cancer Research. 2017;23(18):5326–5328. doi: 10.1158/1078-0432.CCR-17-1799.
    1. Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, Giles F. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC) J Immunother Cancer. 2018;6(1):39. doi: 10.1186/s40425-018-0349-3.
    1. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–4280. doi: 10.1073/pnas.0915174107.
    1. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345. doi: 10.1056/NEJMoa1709684.
    1. Motzer RJ, Tannir NM, Mcdermott DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med. 2018;378(14):1277-90.
    1. Hellmann Matthew D., Ciuleanu Tudor-Eliade, Pluzanski Adam, Lee Jong Seok, Otterson Gregory A., Audigier-Valette Clarisse, Minenza Elisa, Linardou Helena, Burgers Sjaak, Salman Pamela, Borghaei Hossein, Ramalingam Suresh S., Brahmer Julie, Reck Martin, O’Byrne Kenneth J., Geese William J., Green George, Chang Han, Szustakowski Joseph, Bhagavatheeswaran Prabhu, Healey Diane, Fu Yali, Nathan Faith, Paz-Ares Luis. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. New England Journal of Medicine. 2018;378(22):2093–2104. doi: 10.1056/NEJMoa1801946.
    1. Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16(3):133–144. doi: 10.1016/j.molmed.2010.01.003.
    1. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(7):1019–1031. doi: 10.1007/s00262-011-1172-6.
    1. Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14(9):603–622. doi: 10.1038/nrd4596.
    1. Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):100. doi: 10.1186/s13045-018-0644-y.
    1. Gangadhar TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced melanoma and select solid tumors: updated phase 1 results from ECHO-202/KEYNOTE-037. Ann Oncol. 2016;27:1110PD. 10.1093/annonc/mdw379.06.
    1. Perez RP, Riese MJ, Lewis KD, Saleh MN, Daud A, Berlin J, Lee JJ, Mukhopadhyay S, Zhou L, Serbest G, et al. Epacadostat plus nivolumab in patients with advanced solid tumors: preliminary phase I/II results of ECHO-204. J Clin Oncol. 2017;35(15_suppl):3003. doi: 10.1200/JCO.2017.35.15_suppl.3003.
    1. Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S, Arance A, Carlino MS, Grob J-J, Kim TM, et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol. 2018;36(15_suppl):108. doi: 10.1200/JCO.2018.36.15_suppl.108.
    1. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39(1):74–88. doi: 10.1016/j.immuni.2013.06.014.
    1. Liu L., Mayes P. A., Eastman S., Shi H., Yadavilli S., Zhang T., Yang J., Seestaller-Wehr L., Zhang S.-Y., Hopson C., Tsvetkov L., Jing J., Zhang S., Smothers J., Hoos A. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on Immune Function and in Combination with Immunomodulatory Antibodies Targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research. 2015;21(7):1639–1651. doi: 10.1158/1078-0432.CCR-14-2339.
    1. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 2017;9(385):eaak9679. doi: 10.1126/scitranslmed.aak9679.
    1. Campesato LF, Merghoub T. Antiangiogenic therapy and immune checkpoint blockade go hand in hand. Ann Transl Med. 2017;5(24):497. 10.21037/atm.2017.10.12.
    1. Manegold C, Dingemans A-MC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu Y-L, Brustugun OT, Crinò L. The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 2017;12(2):194–207. doi: 10.1016/j.jtho.2016.10.003.
    1. Lee C-H, Makker V, Rasco DW, Taylor MH, Stepan DE, Shumaker RC, Schmidt EV, Guo M, Dutcus CE, Motzer RJ. Lenvatinib + pembrolizumab in patients with renal cell carcinoma: updated results. J Clin Oncol. 2018;36(15_suppl):4560. doi: 10.1200/JCO.2018.36.15_suppl.4560.
    1. Makker V, Rasco DW, Vogelzang NJ, Messing M, Brose MS, Cohn AL, Aghajanian C, Stepan DE, Dutcus CE, Schmidt EV, et al. Lenvatinib + pembrolizumab in patients with advanced endometrial cancer: updated results. J Clin Oncol. 2018;36(15_suppl):5596. doi: 10.1200/JCO.2018.36.15_suppl.5596.
    1. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 2014;3:e28518. doi: 10.4161/onci.28518.
    1. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–265. doi: 10.1093/jnci/djs629.
    1. Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1(9):1325–1332. doi: 10.1001/jamaoncol.2015.2756.
    1. De La Cruz-Merino L, Illescas Vacas A, Grueso López A, Barco Sánchez A, Míguez Sánchez C, Cancer Immunotherapies Spanish Group Obo. Radiation for awakening the dormant immune system, a promising challenge to explore. Front Immunol. 2014;5:102. 10.3389/fimmu.2014.00102.
    1. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, Mansfield AS, Furutani KM, Olivier KR, Kwon ED. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2015;3(6):610–619. doi: 10.1158/2326-6066.CIR-14-0138.
    1. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–349. doi: 10.1016/j.ijrobp.2012.12.025.
    1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med. 2017;377(20):1919–1929. doi: 10.1056/NEJMoa1709937.
    1. Luke JJ, Lemons JM, Karrison TG, Pitroda SP, Melotek JM, Zha Y, Al-Hallaq HA, Arina A, Khodarev NN, Janisch L. Safety and clinical activity of pembrolizumab and multisite stereotactic body radiotherapy in patients with advanced solid tumors. J Clin Oncol. 2018;36(16):1611–1618. doi: 10.1200/JCO.2017.76.2229.
    1. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21(1):15–25. doi: 10.1038/cdd.2013.67.
    1. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–160. doi: 10.1038/nrclinonc.2010.223.
    1. Apetoh L, Mignot G, Panaretakis T, Kroemer G, Zitvogel L. Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends Mol Med. 2008;14(4):141–151. doi: 10.1016/j.molmed.2008.02.002.
    1. Sharma MD, Hou D-Y, Baban B, Koni PA, He Y, Chandler PR, Blazar BR, Mellor AL, Munn DH. Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice. Immunity. 2010;33(6):942–954. doi: 10.1016/j.immuni.2010.11.022.
    1. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J, Umansky V, Bazhin AV. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer. 2013;133(1):98–107. doi: 10.1002/ijc.27990.
    1. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V. Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol. 2013;190:2464–2471. doi: 10.4049/jimmunol.1202781.
    1. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–354. doi: 10.1016/j.immuni.2015.11.024.
    1. Borghaei H, Langer CJ, Gadgeel S, Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI, et al. 24-month overall survival from KEYNOTE-021 cohort G: Pemetrexed and Carboplatin with or without Pembrolizumab as first-line therapy for advanced nonsquamous non-small cell Lung cancer. J Thorac Oncol. 2019;14(1):124–129. doi: 10.1016/j.jtho.2018.08.004.
    1. Gandhi Leena, Rodríguez-Abreu Delvys, Gadgeel Shirish, Esteban Emilio, Felip Enriqueta, De Angelis Flávia, Domine Manuel, Clingan Philip, Hochmair Maximilian J., Powell Steven F., Cheng Susanna Y.-S., Bischoff Helge G., Peled Nir, Grossi Francesco, Jennens Ross R., Reck Martin, Hui Rina, Garon Edward B., Boyer Michael, Rubio-Viqueira Belén, Novello Silvia, Kurata Takayasu, Gray Jhanelle E., Vida John, Wei Ziwen, Yang Jing, Raftopoulos Harry, Pietanza M. Catherine, Garassino Marina C. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2018;378(22):2078–2092. doi: 10.1056/NEJMoa1801005.
    1. Fuchs CS, Doi T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical keynote-059 trial. JAMA Oncol. 2018;4(5):e180013. doi: 10.1001/jamaoncol.2018.0013.
    1. Doi T, Piha-Paul SA, Jalal SI, Saraf S, Lunceford J, Koshiji M, Bennouna J. Safety and antitumor activity of the anti–programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J Clin Oncol. 2018;36(1):61–67. doi: 10.1200/JCO.2017.74.9846.
    1. Shah Manish A., Kojima Takashi, Enzinger Peter C., Hochhauser Daniel, Raimbourg Judith, Hollebecque Antoine, Lordick Florian, Kim Sung-Bae, Tajika Masahiro, Kim Heung Tae, Lockhart Albert Craig, Arkenau Hendrik-Tobias, El Hajbi Farid, Gupta Mukul, Pfeiffer Per, Liu Qi, Lunceford Jared, Kang S. Peter, Bhagia Pooja, Kato Ken. Pembrolizumab for patients with previously treated metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: Phase 2 KEYNOTE-180 study. Journal of Clinical Oncology. 2018;36(15_suppl):4049–4049. doi: 10.1200/JCO.2018.36.15_suppl.4049.
    1. Janjigian Yelena Y., Bendell Johanna, Calvo Emiliano, Kim Joseph W., Ascierto Paolo A., Sharma Padmanee, Ott Patrick A., Peltola Katriina, Jaeger Dirk, Evans Jeffry, de Braud Filippo, Chau Ian, Harbison Christopher T., Dorange Cecile, Tschaika Marina, Le Dung T. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. Journal of Clinical Oncology. 2018;36(28):2836–2844. doi: 10.1200/JCO.2017.76.6212.
    1. Bang Y-J, Muro K, Fuchs CS, Golan T, Geva R, Hara H, Jalal SI, Borg C, Doi T, Wainberg ZA, et al. KEYNOTE-059 cohort 2: safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol. 2017;35(15_suppl):4012. doi: 10.1200/JCO.2017.35.15_suppl.4012.
    1. Takahari Daisuke, Shoji Hirokazu, Hara Hiroki, Esaki Taito, Machida Nozomu, Nagashima Kengo, Aoki Kazunori, Honda Kazufumi, Miyamoto Takahiro, Boku Narikazu, Kato Ken. Preliminary result of phase 1/2 study of ramucirumab plus nivolumab in patients with previously treated advanced gastric adenocarcinoma (NivoRam study) Journal of Clinical Oncology. 2018;36(15_suppl):4047–4047. doi: 10.1200/JCO.2018.36.15_suppl.4047.
    1. Klempner SJ, Bendell J, Meucci Villaflor V, Tenner L, Stein S, Sirard CA, Kagey M, Newman W, Schlienger K, Strickler J. 660PSafety and efficacy of a DKK1 inhibitor (DKN-01) in combination with pembrolizumab (P) in patients (Pts) with advanced gastroesophageal (GE) malignancies. Ann Oncol. 2018;29:mdy282.044. 10.1093/annonc/mdy282.044.
    1. Kang Y-K, Yamaguchi K, Hara H, Fumita S, Azuma M, Boku N, Chen L-T, Kato K, Chung HC, Minashi K, et al. 671PInterim safety and clinical activity of nivolumab (Nivo) in combination with S-1/capecitabine plus oxaliplatin in patients (pts) with previously untreated unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer: part 1 study of ATTRACTION-04 (ONO-4538-37). Ann Oncol. 2017;28:mdx369.055. 10.1093/annonc/mdx369.055.
    1. Catenacci DVT, Lee K-W, Yen J, Odegaard J, Franovic A, Baughman J, Muth J, Wynter-Horton A, Wu T, Wigginton J, et al. 662PBiomarker-guided enrichment of the antitumor activity of margetuximab (M) plus pembrolizumab (P) in patients with advanced HER2+ gastric adenocarcinoma (GEA). Ann Oncol. 2018;29:mdy282.046. 10.1093/annonc/mdy282.046.
    1. Shah MA, Metges J-P, Cunningham D, Shiu K-K, Wyrwicz L, Thai D, Brachmann C, Bhargava P, Catenacci DVT, Wainberg ZA. A phase II, open-label, randomized study to evaluate the efficacy and safety of andecaliximab combined with nivolumab versus nivolumab alone in subjects with unresectable or recurrent gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2019;37(4_suppl):75. doi: 10.1200/JCO.2019.37.4_suppl.75.
    1. Janjigian YY, Chou JF, Simmons M, Momtaz P, Sanchez-Vega F, Shcherba M, Ku GY, Won E, Chong CR, Gerdes H, et al. First-line pembrolizumab (P), trastuzumab (T), capecitabine (C) and oxaliplatin (O) in HER2-positive metastatic esophagogastric adenocarcinoma (mEGA) J Clin Oncol. 2019;37(4_suppl):62. doi: 10.1200/JCO.2019.37.4_suppl.62.
    1. Catenacci DVT, Lim KH, Uronis HE, Kang Y-K, Ng MCH, Gold PJ, Enzinger PC, Lee KW, Lacy J, Park SH, et al. Antitumor activity of margetuximab (M) plus pembrolizumab (P) in patients (pts) with advanced HER2+ (IHC3+) gastric carcinoma (GC) J Clin Oncol. 2019;37(4_suppl):65. doi: 10.1200/JCO.2019.37.4_suppl.65.
    1. Hara H, Shoji H, Takahari D, Esaki T, Machida N, Nagashima K, Aoki K, Honda K, Miyamoto T, Boku N, et al. Phase I/II study of ramucirumab plus nivolumab in patients in second-line treatment for advanced gastric adenocarcinoma (NivoRam study) J Clin Oncol. 2019;37(4_suppl):129. doi: 10.1200/JCO.2019.37.4_suppl.129.
    1. Network TCGA. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–209. doi: 10.1038/nature13480.
    1. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596.
    1. Satoh T, Chen LT, Kang YK, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yoshikawa T, et al. 617PDA phase III study of nivolumab (nivo) in previously treated advanced gastric or gastric esophageal junction (G/GEJ) cancer (ATTRACTION-2): Two-years update data. Ann Oncol. 2018;29(suppl_8):mdy282.002. doi: 10.1093/annonc/mdy282.002.
    1. Petrylak DP, Arkenau H-T, Perez-Gracia JL, Krebs M, Santana-Davila R, Yang J, Rege J, Mi G, Ferry D, Herbst RS. A multicohort phase I study of ramucirumab (R) plus pembrolizumab (P): interim safety and clinical activity in patients with urothelial carcinoma. J Clin Oncol. 2017;35(6_suppl):349. doi: 10.1200/JCO.2017.35.6_suppl.349.
    1. Kato K, Shah MA, Enzinger PC, Bennouna J, Shen L, Adenis A, Sun JM, Cho BC, Ozguroglu M, Kojima T, et al. 785TiPPhase III KEYNOTE-590 study of chemotherapy + pembrolizumab versus chemotherapy + placebo as first-line therapy for patients (Pts) with advanced esophageal or esophagogastric junction (E/EGJ) cancer. Ann Oncol. 2018;29(suppl_8):mdy282.168.
    1. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Rd WT. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (Lond. Engl.) 2017;389(10088):2492. doi: 10.1016/S0140-6736(17)31046-2.
    1. Zhu AX, Finn RS, Cattan S, Edeline J, Ogasawara S, Palmer DH, Verslype C, Zagonel V, Rosmorduc O, Vogel A, et al. KEYNOTE-224: pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. J Clin Oncol. 2018;36(4_suppl):209. doi: 10.1200/JCO.2018.36.4_suppl.209.
    1. Sangro B, Park J-W, Cruz CMD, Anderson J, Lang L, Neely J, Shaw JW, Cheng A-L. A randomized, multicenter, phase 3 study of nivolumab vs sorafenib as first-line treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): CheckMate-459. J Clin Oncol. 2016;34(15_suppl):TPS4147. doi: 10.1200/JCO.2016.34.15_suppl.TPS4147.
    1. Gu P, Park J, Zhong J, Guo S, Hickey R, Aaltonen E, Horn J, Du KL, Shanbhogue K, Megibow A, et al. Initial experience of combination nivolumab and local-regional treatment in patients with advanced hepatocellular carcinoma (HCC) J Clin Oncol. 2018;36(15_suppl):e16149. doi: 10.1200/JCO.2018.36.15_suppl.e16149.
    1. Ikeda M, Sung MW, Kudo M, Kobayashi M, Baron AD, Finn RS, Kaneko S, Zhu AX, Kubota T, Kraljevic S, et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC) J Clin Oncol. 2018;36(15_suppl):4076. doi: 10.1200/JCO.2018.36.15_suppl.4076.
    1. Pishvaian MJ, Lee MS, Ryoo BY, Stein S, Lee KH, Verret W, Spahn J, Shao H, Liu B, Iizuka K, et al. LBA26Updated safety and clinical activity results from a phase Ib study of atezolizumab + bevacizumab in hepatocellular carcinoma (HCC) Ann Oncol. 2018;29(suppl_8):mdy424.028.
    1. Kelley RK, Abou-Alfa GK, Bendell JC, Kim T-Y, Borad MJ, Yong W-P, Morse M, Kang Y-K, Rebelatto M, Makowsky M, et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. J Clin Oncol. 2017;35(15_suppl):4073. doi: 10.1200/JCO.2017.35.15_suppl.4073.
    1. Ikeda M, Ueno M, Morizane C, Kobayashi S, Ohno I, Kondo S, Okano N, Kimura K, Asada S, Namba Y, et al. A multicenter, open-label, phase I study of nivolumab alone or in combination with gemcitabine plus cisplatin in patients with unresectable or recurrent biliary tract cancer. J Clin Oncol. 2019;37(4_suppl):306. doi: 10.1200/JCO.2019.37.4_suppl.306.
    1. Lin J, Shi W, Zhao S, Hu J, Hou Z, Yao M, Chrin G, Pan J, Hu K, Zhao L, et al. Lenvatinib plus checkpoint inhibitors in patients (pts) with advanced intrahepatic cholangiocarcinoma (ICC): Preliminary data and correlation with next-generation sequencing. J Clin Oncol. 2018;36(4_suppl):500. doi: 10.1200/JCO.2018.36.4_suppl.500.
    1. Ioka T, Ueno M, Oh D-Y, Fujiwara Y, Chen J-S, Doki Y, Mizuno N, Park K, Asagi A, Hayama M, et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC) J Clin Oncol. 2019;37(4_suppl):387. doi: 10.1200/JCO.2019.37.4_suppl.387.
    1. Floudas CS, Xie C, Brar G, Morelli MP, Fioravanti S, Walker M, Mabry-Hrones D, Wood BJ, Levy EB, Krishnasamy VP, et al. Combined immune checkpoint inhibition (ICI) with tremelimumab and durvalumab in patients with advanced hepatocellular carcinoma (HCC) or biliary tract carcinomas (BTC) J Clin Oncol. 2019;37(4_suppl):336. doi: 10.1200/JCO.2019.37.4_suppl.336.
    1. Hidalgo M, Park JO, Ramirez R, Peled A, Vainstein Haras A, Rosenfeld O, Lustig TM, Sorani E, Bohana Kashtan O, Schlienger K, et al. 1133PDA phase IIa trial to assess the safety and efficacy of BL-8040 and pembrolizumab in patients with metastatic pancreatic adenocarcinoma (PDAC). Ann Oncol. 2018;29:mdy288.006. 10.1093/annonc/mdy288.006.
    1. Wainberg ZA, Hochster HS, Kim EJ-H, George B, Kalyan A, Chiorean EG, Waterhouse DM, Gutierrez M, Parikh AR, Jain R, et al. Phase I study of nivolumab (Nivo) + nab-paclitaxel (nab-P) + gemcitabine (Gem) in advanced pancreatic cancer (APC) J Clin Oncol. 2019;37(4_suppl):298. doi: 10.1200/JCO.2019.37.4_suppl.298.
    1. Brar G, Xie C, Floudas CS, Morelli MP, Fioravanti S, Walker M, Mabry-Hrones D, Jones JC, Greten TF. Immune checkpoint inhibition (ICI) in combination with SBRT in patients with advanced pancreatic adenocarcinoma (aPDAC) J Clin Oncol. 2019;37(4_suppl):192. doi: 10.1200/JCO.2019.37.4_suppl.192.
    1. Ducreux MP, Cheng AL, Qin S, Zhu AX, Ikeda M, Kim TY, Xu DZ, Verret W, Liu J, Finn RS, et al. 782TiPAtezolizumab + bevacizumab vs sorafenib in locally advanced or metastatic hepatocellular carcinoma: The randomised phase III study IMbrave150. Ann Oncol. 2018;29(suppl_8):mdy282.165.
    1. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003. doi: 10.1038/ng.3375.
    1. Bang YJ, Doi T, Braud FD, Piha-Paul S, Hollebecque A, Razak ARA, Lin CC, Ott PA, He AR, Yuan SS. 525 Safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: Interim results of KEYNOTE-028. Eur J Cancer. 2015;51:S112. doi: 10.1016/S0959-8049(16)30326-4.
    1. Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Therap Adv Gastroenterol. 2017;10(1):168–194. doi: 10.1177/1756283X16667909.
    1. Protti MP, De Monte L. Immune infiltrates as predictive markers of survival in pancreatic cancer patients. Front Physiol. 2013;4:210. doi: 10.3389/fphys.2013.00210.
    1. O’Neil BH, Wallmark J, Lorente D, Elez E, Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Moss RA, Siu LL. Pembrolizumab (MK-3475) for patients (pts) with advanced colorectal carcinoma (CRC): Preliminary results from KEYNOTE-028. Eur J Cancer. 2015;51:S103. doi: 10.1016/S0959-8049(16)30304-5.
    1. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–1191. doi: 10.1016/S1470-2045(17)30422-9.
    1. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–779. doi: 10.1200/JCO.2017.76.9901.
    1. Bendell JC, Powderly JD, Lieu CH, Eckhardt SG, Hurwitz H, Hochster HS, Murphy JE, Funke RP, Rossi C, Wallin J, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC) J Clin Oncol. 2015;33(3_suppl):704. doi: 10.1200/jco.2015.33.3_suppl.704.
    1. Bendell JC, Bang Y-J, Chee CE, Ryan DP, McRee AJ, Chow LQ, Desai J, Wongchenko M, Yan Y, Pitcher B, et al. A phase Ib study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) J Clin Oncol. 2018;36(4_suppl):560. doi: 10.1200/JCO.2018.36.4_suppl.560.
    1. Segal NH, Kemeny NE, Cercek A, Reidy DL, Raasch PJ, Warren P, Hrabovsky AE, Campbell N, Shia J, Goodman KA, et al. Non-randomized phase II study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients. J Clin Oncol. 2016;34(15_suppl):3539. doi: 10.1200/JCO.2016.34.15_suppl.3539.
    1. Yarchoan M, Ferguson AK, Durham JN, Rozich N, Rodriguez C, Huang C-Y, Browner IS, Jesus-Acosta AD, Le DT, Laheru D, et al. A phase II study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with mismatch repair–proficient (MMR-p) advanced colorectal cancer. J Clin Oncol. 2019;37(4_suppl):563. doi: 10.1200/JCO.2019.37.4_suppl.563.
    1. Chen EX, Jonker DJ, Kennecke HF, Berry SR, Couture F, Ahmad CE, Goffin JR, Kavan P, Harb M, Colwell B, et al. CCTG CO.26 trial: a phase II randomized study of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma (rCRC) J Clin Oncol. 2019;37(4_suppl):481. doi: 10.1200/JCO.2019.37.4_suppl.481.
    1. Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44(3):609–621. doi: 10.1016/j.immuni.2016.01.024.

Source: PubMed

3
Předplatit