Emerging and future therapies for hemophilia

Marcus E Carr, Bartholomew J Tortella, Marcus E Carr, Bartholomew J Tortella

Abstract

The evolution of care in hemophilia is a remarkable story. Over the last 60 years, advances in protein purification, protein chemistry, donor screening, viral inactivation, gene sequencing, gene cloning, and recombinant protein production have dramatically enhanced the treatment and lives of patients with hemophilia. Recent efforts have produced enhanced half-life (EHL) clotting factors to better support prophylaxis and decrease the frequency of infusions. Medical needs remain in the areas of alternate modes of administration to decrease the need for venous access, better treatment, and prophylaxis for patients who form antibodies to clotting factors, and ultimately a cure of the underlying genetic defect. In this brief review, the authors summarize data on EHL clotting factors, introduce agents whose mode of action is not clotting factor replacement, and list current gene therapy efforts.

Keywords: anti-tissue factor pathway inhibitor antibodies; clotting factor analogs; extended half-life clotting factors; gene therapy; nonfactor replacement therapy.

Figures

Figure 1
Figure 1
Gene therapy using an adenovirus vector. Note: Reproduced from US National Library of Medicine.

References

    1. Mannucci PM, Tuddenham EGD. The hemophiliac – from royal genes to gene therapy. N Engl J Med. 2001;344:1773–1779.
    1. Bolton-Maggs PH, Pasi KJ. Hemophilias A and B. Lancet. 2003;361:1801–1809.
    1. White GC, 2nd, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001;85:560.
    1. Mannucci PM. Hemophilia and related bleeding disorders: a story of dismay and success. Hematology Am Soc Hematol Educ Program. 2002;1:1–9.
    1. Nilsson IM. Experience with prophylaxis in Sweden. Semin Hematol. 1993;30(3 Suppl 2):16–19.
    1. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357:535–544.
    1. Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first twenty years. Haemophilia. 2000;6(Suppl 1):60–67.
    1. Mannucci PM. Hemophilia: treatment options on the twenty-first century. J Thromb Haemost. 2005;1:1349–1355.
    1. Mannucci PM. Back to the future: a recent history of haemophilia treatment. Haemophilia. 2008;14(Suppl 3):10–18.
    1. White GC, McMillan CW, Kingdon HS, Shoemaker CB. Use of recombinant antihemophilic factor in the treatment of two patients with classic hemophilia. N Engl J Med. 1989;320:166–170.
    1. Soucie JM, De Staercke C, Monahan PE, et al. US Hemophilia Treatment Center Network. Evidence for the transmission of parvovirus B19 in patients with bleeding disorders treated with plasma-derived factor concentrates in the era of nucleic acid test screening. Transfusion. 2013;53:1217–1225.
    1. Llewelyn CA, Hewitt PE, Knight RS, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet. 2004;363(9407):417–421.
    1. Astermark J. Overview of inhibitors. Semin Hematol. 2006;43(2 Suppl 4):S3–S7.
    1. Astermark J, Morado M, Rocino A, et al. EHTSB Current European practice in immune tolerance induction therapy in patients with haemophilia and inhibitors. Haemophilia. 2006;12:363–371.
    1. Ng HJ, Loh YSM, Tan DCL, Lee LH. Thrombosis associated with the use of recombinant activated factor VII: profiling two events. Thromb Haemost. 2004;92:1448–1449.
    1. Rosenfeld SB, Watkinson KK, Thompson BH, Macfarlan DE, Lentz SR. Pulmonary embolism after sequential use of recombinant factor VIIa and activated prothrombin complex concentrate in a factor VIII inhibitor patient. Thromb Haemost. 2002;87:925–926.
    1. Economou M, Teli A, Tzantzaroudi A, Tsatra I, Zavitsanakis A, Athanassiou-Metaxa M. Sequentila therapy with activated prothrombin complex concentrate (FEIBA) and recombinant factor VIIa in a patient with severe haemophilia A, inhibitor presence and refractory bleeding. Haemophilia. 2008;14:390–391.
    1. Mirand GG, Rodgers GM. Treatment of an acquired factor VIII inhibitor with sequential recombinant factor VIIa and FEIBA. Haemophila. 2009;15:383–385.
    1. Martinowitz U, Livnat T, Zivelin A, Kenet G. Concomitant infusion of low doses of rFVIIa and FEIBA in haemophilia patients with inhibitors. Haemophilia. 2009;15:904–910.
    1. Antunes SV, Tangada S, Stasyshyn O, et al. Randomized comparison of prophylaxis and on-demand regimens with FEIBA NF in the treatment of haemophilia A and B with inhibitors. Haemophilia. 2014;20:65–72.
    1. Ducore JM, Miguelino MG, Powell JS. Alprolix (recombinant factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Rev Hematol. 2014;7:559–571.
    1. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22:868–876.
    1. Goebl NA, Babbey CM, Datta-Mannan A, Witcher DR, Wroblewski VJ, Dunn KW. Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. Mol Biol Cell. 2008;19:5490–5505.
    1. Rath T, Baker K, Dumont JA, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2015;35:235–254.
    1. Takaki A, Enfield DL, Thompson AR. Cleavage and inactivation of factor IX by granulocyte elastase. J Clin Invest. 1983;72:1706–1715.
    1. Shapiro AD, Ragni MV, Valentino LA. Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients. Blood. 2012;119:666–672.
    1. Peters RT, Low SC, Kamphaus GD, et al. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood. 2010;115:2057–2064.
    1. Powell JS, Pasi KJ, Ragni MV, et al. B-LONG Investigators Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013;369:2313–2323.
    1. Powell JS, Shapiro A, Ragni M. Switching to recombinant factor IX Fc fusion protein prophylaxis results in fewer infusions, decreased factor IX consumption and lower bleeding rates. Br J Haematol. 2015;168:113–123.
    1. Powell JS, Apte S, Chambost H, et al. Long-acting recombinant factor IX Fc fusion protein (rFIXFc) for perioperative management of subjects with haemophilia B in the phase 3 B-LONG study. Br J Haematol. 2015;168:124–134.
    1. Abuchowski A, van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;252:3578–3581.
    1. Mei B, Pan C, Jiang H, et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood. 2010;116:270–279.
    1. Collins PW, Møss J, Knobe K, Groth A, Colberg T, Watson E. Population pharmacokinetic modeling for dose setting of nonacog beta pegol (N9-GP), a glycoPEGylated recombinant factor IX. J Thromb Haemost. 2012;10:2305–2312.
    1. Østergaard H, Bjelke JR, Hansen L, et al. Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood. 2011;118:2333–2341.
    1. Negrier C, Knobe K, Tiede A, Giangrande P, Moss J. Enhanced pharmacokinetic properties of a glycoPEGylated recombinant factor IX: a first human dose trial in patients with hemophilia B. Blood. 2011;118:2695–2701.
    1. Collins PW, Young G, Knobe K, et al. Paradigm 2 Investigators Recombinant long-acting glycoPEGylated factor IX in hemophilia B: a multinational randomized phase 3 trial. Blood. 2014;124:3880–3886.
    1. Metzner HJ, Weimer T, Kronthaler U, Lang W, Schulte S. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost. 2009;102:634–644.
    1. Santagostino E, Negrier C, Klamroth R, et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients. Blood. 2012;120:2405–2411.
    1. Santagostino E. PROLONG-9FP clinical development program – phase I results of recombinant fusion protein linking coagulation factor IX with recombinant albumin (rIX-FP) Thromb Res. 2013;131(Suppl 2):S7–S10.
    1. Kempton CL, Abshire TC, Deveras RA, et al. Pharmacokinetics and safety of OBI-1, a recombinant B domain-deleted porcine factor VIII, in subjects with haemophilia A. Haemophilia. 2012;18:798–804.
    1. Jruse-Jarres R, St-Louis J, Greist A, et al. Efficacy and safety of OBI-1, an antihaemophilic factor VIII (recombinant), porcine sequence, in subjects with acquired haemophilia A. Haemophilia. 2015;21:162–170.
    1. Zollner S, Schuermann D, Raquet E, et al. Pharmacological characteristics of a novel, recombinant fusion protein linking coagulation factor VIIa with albumin (rFVIIa-FP) J Thromb Haemost. 2014;12:220–228.
    1. Schulte S. Use of albumin fusion technology to prolong the half-life of recombinant factor VIIa. Thromb Res. 2008;122(Suppl 4):S14–S19.
    1. Weimer T, Wormsbächer W, Kronthaler U, Lang W, Liebing U, Schulte S. Prolonged in-vivo half of factor VIIa by fusion to albumin. Thromb Haemost. 2008;99:659–667.
    1. Hart G, Hershkovitz O, Lilan AB, Zakar M, Binder L, Fima E. Mod-5014, a novel long-acting FVIIa proposing an improved prophylactic and on demand treatment for hemophilia patients following SC and IV administration comprehensive in-vitro and in-vivo evaluation in preparation for clinical studies. Blood. 2013;122:3578.
    1. Balan S, Choi JW, Godwin A, et al. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem. 2007;18:61–76.
    1. Salas J, Liu T, Lu Q, et al. Enhanced pharmacokinetics of factor VIIa as a monomeric Fc fusion. Thromb Res. 2015;135:970–976.
    1. Agersø H, Overgaard RV, Petersen MB, et al. Pharmacokinetics of an anti-TFPI monoclonal antibody (concizumab) blocking the TFPI interaction with the active site of FXa in cynomolgus monkeys after iv and sc administration. Eur J Pharm Sci. 2014;56:65–69.
    1. Chowdary P, Lethagen S, Friedrich U, et al. The Explorerâ1 Investigators Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial. J Thromb Haemost. 2015;13:743–754.
    1. Barros SA, Carioto M, Hettinger J, et al. Expanded therapeutic index of antithrombin silencing and correction of APTT in a hemophilia A mouse model. Blood. 2013;122:3585.
    1. Sorensen B, Mant T, Akinc A, et al. Aln-AT3 Investigators, International Multicenter Study A subcutaneously administered RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of hemophilia: interim phase 1 study results in healthy volunteers and patients with hemophilia A or B. Blood. 2014;124:693.
    1. Sampei Z, Igawa T, Soeda T, et al. Non-antigen-contacting region of an asymmetric bispecific antibody to factors IXa/X significantly affects factor VII-mimetic activity. MAbs. 2015;7:120–128.
    1. Kitazawa T, Igawa T, Sampei Z, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med. 2012;18:1570–1574.
    1. Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One. 2013;8:e57479.
    1. Muto A, Yoshihashi K, Takeda M, et al. Anti-factor IXa/X bispecific antibody (ACE910): hemostatic potency against ongoing bleeds in a hemophilia A model and the possibility of routine supplementation. J Thromb Haemost. 2014;12:206–213.
    1. Muto A, Yoshihashi K, Takeda M, et al. The anti-factor IXa/X bispecific antibody ACE910 prevents spontaneous joint bleeds in a long-term primate model of acquired hemophilia A. Blood. 2014;124:3165–3171.
    1. High KH, Nathwani A, Spencer T, Lillicrap D. Current status of haemophilia gene therapy. Haemophilia. 2014;20(Suppl 4):43–49.
    1. Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–2365.
    1. Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371:1994–2004.
    1. Crudele JM, Finn JD, Siner JI, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125:1553–1561.
    1. Matrai J, Chuah MK, VandenDriessche T. Recent advance in lentiviral vector development and applications. Mol Ther. 2010;18:477–490.
    1. VandenDriessche T, Thorrez L, Naldini L, et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood. 2002;100:813–822.
    1. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood. 2004;103:3700–3709.
    1. VandenDriessche T, Thorrez L, Acosta-Sanchez A, et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost. 2007;5:16–24.
    1. Brown BD, Cantore A, Annoni A, et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood. 2007;110:4144–4152.
    1. Matrai J, Cantore A, Bartholomae CC, et al. Hepatocyte-targeted expression by integrase-defective lentivrial vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology. 2011;53:1696–1707.
    1. US National Library of Medicine Gene therapy using an adenovirus vector; Handbook. [Accessed June 17, 2015]. Available from: .

Source: PubMed

3
Předplatit