The association between frailty and MRI features of cerebral small vessel disease

Ilse M J Kant, Henri J M M Mutsaerts, Simone J T van Montfort, Myriam G Jaarsma-Coes, Theodoor D Witkamp, Georg Winterer, Claudia D Spies, Jeroen Hendrikse, Arjen J C Slooter, Jeroen de Bresser, BioCog Consortium, Franz Paul Armbruster, Axel Böcher, Diana Boraschi, Friedrich Borchers, Giacomo Della Camera, Edwin van Dellen, Ina Diehl, Thomas Bernd Dschietzig, Insa Feinkohl, Ariane Fillmer, Jürgen Gallinat, Bettina Hafen, Katarina Hartmann, Karsten Heidtke, Anja Helmschrodt, Paola Italiani, Bernd Ittermann, Roland Krause, Marion Kronabel, Simone Kühn, Gunnar Lachmann, Daniela Melillo, David K Menon, Laura Moreno-López, Rudolf Mörgeli, Peter Nürnberg, Kwaku Ofosu, Maria Olbert, Malte Pietzsch, Tobias Pischon, Jacobus Preller, Jana Ruppert, Reinhard Schneider, Emmanuel A Stamatakis, Simon Weber, Marius Weyer, Stefan Winzeck, Alissa Wolf, Fatima Yürek, Norman Zacharias, Ilse M J Kant, Henri J M M Mutsaerts, Simone J T van Montfort, Myriam G Jaarsma-Coes, Theodoor D Witkamp, Georg Winterer, Claudia D Spies, Jeroen Hendrikse, Arjen J C Slooter, Jeroen de Bresser, BioCog Consortium, Franz Paul Armbruster, Axel Böcher, Diana Boraschi, Friedrich Borchers, Giacomo Della Camera, Edwin van Dellen, Ina Diehl, Thomas Bernd Dschietzig, Insa Feinkohl, Ariane Fillmer, Jürgen Gallinat, Bettina Hafen, Katarina Hartmann, Karsten Heidtke, Anja Helmschrodt, Paola Italiani, Bernd Ittermann, Roland Krause, Marion Kronabel, Simone Kühn, Gunnar Lachmann, Daniela Melillo, David K Menon, Laura Moreno-López, Rudolf Mörgeli, Peter Nürnberg, Kwaku Ofosu, Maria Olbert, Malte Pietzsch, Tobias Pischon, Jacobus Preller, Jana Ruppert, Reinhard Schneider, Emmanuel A Stamatakis, Simon Weber, Marius Weyer, Stefan Winzeck, Alissa Wolf, Fatima Yürek, Norman Zacharias

Abstract

Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype.

Trial registration: ClinicalTrials.gov NCT02265263.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Example of a participant with a high WMH volume and complex WMH shape (left: original 3D FLAIR image; right: FLAIR image with overlay of the segmented WMH probability map in red).

References

    1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Fried LP, et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146.
    1. Buta BJ, et al. Frailty assessment instruments: Systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 2016;26:53–61. doi: 10.1016/j.arr.2015.12.003.
    1. Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J. Am. Geriatr. Soc. 2010;58:248–255. doi: 10.1111/j.1532-5415.2009.02671.x.
    1. Brown CH, et al. The Association between Preoperative Frailty and Postoperative Delirium after Cardiac Surgery. Anesth. Analg. 2016;123:430–435. doi: 10.1213/ANE.0000000000001271.
    1. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–497. doi: 10.1016/S1474-4422(13)70060-7.
    1. Shi Y, Wardlaw JM. Update on cerebral small vessel disease: A dynamic whole-brain disease. Stroke Vasc. Neurol. 2016;1:83–92. doi: 10.1136/svn-2016-000035.
    1. Lawrence AJ, et al. Pattern and Rate of Cognitive Decline in Cerebral Small Vessel Disease: A Prospective Study. PLoS One. 2015;10:e0135523. doi: 10.1371/journal.pone.0135523.
    1. de Bruijn RF, et al. Determinants, MRI correlates, and prognosis of mild cognitive impairment: the Rotterdam Study. J. Alzheimers. Dis. 2014;42(Suppl 3):S239–49. doi: 10.3233/JAD-132558.
    1. Siejka TP, et al. Frailty and Cerebral Small Vessel Disease: A Cross-Sectional Analysis of the Tasmanian Study of Cognition and Gait (TASCOG) Journals Gerontol. Ser. A. 2017;0:1–6.
    1. Avila-funes, J. A. et al. Vascular Cerebral Damage in Frail Older Adults: The AMImage Study Editor’ s Choice. 72, 971–977 (2017).
    1. Chung CP, et al. Cerebral microbleeds are associated with physical frailty: A community-based study. Neurobiol. Aging. 2016;44:143–150. doi: 10.1016/j.neurobiolaging.2016.04.025.
    1. Del Brutto Oscar H, Mera Robertino M, Cagino Kristen, Fanning Kathryn D, Milla-Martinez Marleni F, Nieves Johnathan L, Zambrano Mauricio, Sedler Mark J. Neuroimaging signatures of frailty: A population-based study in community-dwelling older adults (the Atahualpa Project) Geriatrics & Gerontology International. 2016;17(2):270–276. doi: 10.1111/ggi.12708.
    1. Kant IMJ, et al. The association between brain volume, cortical brain infarcts, and physical frailty. Neurobiol. Aging. 2018;70:247–253. doi: 10.1016/j.neurobiolaging.2018.06.032.
    1. Newman AB, et al. Associations of subclinical cardiovascular disease with frailty. J. Gerontol. A. Biol. Sci. Med. Sci. 2001;56:M158–M166. doi: 10.1093/gerona/56.3.M158.
    1. Maltais M, et al. Prospective association of white matter hyperintensity volume and frailty in older adults. Exp. Gerontol. 2019;118:51–54. doi: 10.1016/j.exger.2019.01.007.
    1. Biesbroek JM, et al. Impact of Strategically Located White Matter Hyperintensities on Cognition in Memory Clinic Patients with Small Vessel Disease. PLoS One. 2016;11:1–17. doi: 10.1371/journal.pone.0166261.
    1. Murray A, et al. Brain hyperintensity location determines outcome in the triad of impaired cognition, physical health and depressive symptoms: A cohort study in late life. Arch. Gerontol. Geriatr. 2016;63:49–54. doi: 10.1016/j.archger.2015.10.004.
    1. De Bresser J, et al. White matter hyperintensity shape and location feature analysis on brain MRI; Proof of principle study in patients with diabetes. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-20084-y.
    1. Ghaznawi, R. et al. The association between lacunes and white matter hyperintensity features on MRI: The SMART -MR study, 10.1177/0271678X18800463 (2018).
    1. Wierenga CE, Hays CC, Zlatar ZZ. Cerebral Blood Flow Measured by Arterial Spin Labeling MRI as a Preclinical Marker of Alzheimer’s Disease. J Alzheimer Dis. 2014;42:S411–S419. doi: 10.3233/JAD-141467.
    1. Steketee RME, et al. Quantitative functional Arterial Spin Labeling (fASL) MRI - Sensitivity and reproducibility of regional CBF changes using pseudo-continuous ASL product sequences. PLoS One. 2015;10:1–17. doi: 10.1371/journal.pone.0132929.
    1. Mutsaerts Henri JMM, Petr Jan, Václavů Lena, van Dalen Jan W, Robertson Andrew D, Caan Matthan W, Masellis Mario, Nederveen Aart J, Richard Edo, MacIntosh Bradley J. The spatial coefficient of variation in arterial spin labeling cerebral blood flow images. Journal of Cerebral Blood Flow & Metabolism. 2017;37(9):3184–3192. doi: 10.1177/0271678X16683690.
    1. Rolfson DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K. Validity and reliability of the Edmonton Frail Scale. Age Ageing. 2006;35:526–529. doi: 10.1093/ageing/afl041.
    1. Wardlaw JM, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–838. doi: 10.1016/S1474-4422(13)70124-8.
    1. Verwer JH, et al. Occurrence of Impaired Physical Performance in Memory Clinic Patients With Cerebral Small Vessel Disease. Alzheimer Dis. Assoc. Disord. 2017;32:1.
    1. Van Dijk EJ, et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam scan study. Stroke. 2008;39:2712–2719. doi: 10.1161/STROKEAHA.107.513176.
    1. Blair, G. W., Hernandez, M. V., Thrippleton, M. J., Doubal, F. N. & Wardlaw, J. M. Advanced Neuroimaging of Cerebral Small Vessel Disease. Curr. Treat. Options Cardiovasc. Med. 19 (2017).
    1. Shi Y, et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 2016;36:1653–1667. doi: 10.1177/0271678X16662891.
    1. Kraut MA, Beason-Held LL, Elkins WD, Resnick SM. The impact of magnetic resonance imaging-detected white matter hyperintensities on longitudinal changes in regional cerebral blood flow. J. Cereb. Blood Flow Metab. 2008;28:190–197. doi: 10.1038/sj.jcbfm.9600512.
    1. Pinter D, et al. Impact of small vessel disease in the brain on gait and balance. Sci. Rep. 2017;7:1–8. doi: 10.1038/srep41637.
    1. Moon So Young, de Souto Barreto Philipe, Rolland Yves, Chupin Marie, Bouyahia Ali, Fillon Ludovic, Mangin Jean François, Andrieu Sandrine, Cesari Matteo, Vellas Bruno. Prospective associations between white matter hyperintensities and lower extremity function. Neurology. 2018;90(15):e1291–e1297. doi: 10.1212/WNL.0000000000005289.
    1. Wolfson L, et al. Rapid buildup of brain white matter hyperintensities over 4 years linked to ambulatory blood pressure, mobility. cognition, and depression in old persons. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2013;68:1387–1394. doi: 10.1093/gerona/glt072.
    1. Rane S, et al. Quantitative cerebrovascular pathology in a community-based cohort of older adults. Neurobiol. Aging. 2018;65:77–85. doi: 10.1016/j.neurobiolaging.2018.01.006.
    1. Orme JG, Reis J, Herz EJ. Factorial and discriminant validity of the center for epidemiological studies depression (CES‐D) scale. J. Clin. Psychol. 1986;42:28–33. doi: 10.1002/1097-4679(198601)42:1<28::AID-JCLP2270420104>;2-T.
    1. Winterer G, et al. Personalized risk prediction of postoperative cognitive impairment – rationale for the EU-funded BioCog project. Eur. Psychiatry. 2018;0:4–9.
    1. Blaum CS, Xue QL, Michelon E, Semba RD, Fried LP. The association between obesity and the frailty syndrome in older women: The Women’s Health and Aging Studies. J. Am. Geriatr. Soc. 2005;53:927–934. doi: 10.1111/j.1532-5415.2005.53300.x.
    1. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J. Gerontol. A. Biol. Sci. Med. Sci. 2007;62:738–43. doi: 10.1093/gerona/62.7.738.
    1. Savva GM, et al. Using timed up-and-go to identify frail members of the older population. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2013;68:441–446. doi: 10.1093/gerona/gls190.
    1. The EuroQol group. EQ-5D-5L User Guide Version 2.1. EuroQol Research Foundation (2015).
    1. Sainsbury A, Seebass G, Bansal A, Young JB. Reliability of the Barthel Index when used with older people. Age Ageing. 2005;34:228–232. doi: 10.1093/ageing/afi063.
    1. Schmidt, P. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. (Maximilians-Universität München, 2017).
    1. Mutsaerts HJMM, et al. Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI) J. Magn. Reson. Imaging. 2018;47:131–140. doi: 10.1002/jmri.25751.
    1. Gaser C, Dahnke R. CAT - A Computational Anatomy Toolbox for the Analysis of Structural MRI. Data. 2012;32:7743.
    1. Alsop DC, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the european consortium for ASL in dementia. Magn. Reson. Med. 2014;116:102–116.
    1. Mutsaerts HJMM, et al. Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. NeuroImage Clin. 2014;4:139–144. doi: 10.1016/j.nicl.2013.11.003.

Source: PubMed

3
Předplatit