The Effect in Renal Function and Vascular Decongestion in Type 1 Cardiorenal Syndrome Treated with Two Strategies of Diuretics, a Pilot Randomized Trial

Jonathan S Chávez-Iñiguez, Miguel Ibarra-Estrada, Sergio Sánchez-Villaseca, Gregorio Romero-González, Jorge J Font-Yañez, Andrés De la Torre-Quiroga, Andrés Aranda-G de Quevedo, Alexia Romero-Muñóz, Pablo Maggiani-Aguilera, Gael Chávez-Alonso, Juan Gómez-Fregoso, Guillermo García-García, Jonathan S Chávez-Iñiguez, Miguel Ibarra-Estrada, Sergio Sánchez-Villaseca, Gregorio Romero-González, Jorge J Font-Yañez, Andrés De la Torre-Quiroga, Andrés Aranda-G de Quevedo, Alexia Romero-Muñóz, Pablo Maggiani-Aguilera, Gael Chávez-Alonso, Juan Gómez-Fregoso, Guillermo García-García

Abstract

Aim: The main treatment strategy in type 1 cardiorenal syndrome (CRS1) is vascular decongestion. It is probable that sequential blockage of the renal tubule with combined diuretics (CD) will obtain similar benefits compared with stepped-dose furosemide (SF).

Methods: In a pilot double-blind randomized controlled trial of CRS1 patients were allocated in a 1:1 fashion to SF or CD. The SF group received a continuous infusion of furosemide 100 mg during the first day, with daily incremental doses to 200 mg, 300 mg and 400 mg. The CD group received a combination of diuretics, including 4 consecutive days of oral chlorthalidone 50 mg, spironolactone 50 mg and infusion of furosemide 100 mg. The objectives were to assess renal function recovery and variables associated with vascular decongestion.

Results: From July 2017 to February 2020, 80 patients were randomized, 40 to the SF and 40 to the CD group. Groups were similar at baseline and had several very high-risk features. Their mean age was 59 ± 14.5 years, there were 37 men (46.2%). The primary endpoint occurred in 20% of the SF group and 15.2% of the DC group (p = 0.49). All secondary and exploratory endpoints were similar between groups. Adverse events occurred frequently (85%) with no differences between groups (p = 0.53).

Conclusion: In patients with CRS1 and a high risk of resistance to diuretics, the use of CD compared to SF offers the same results in renal recovery, diuresis, vascular decongestion and adverse events, and it can be considered an alternative treatment. ClinicalTrials.gov with number NCT04393493 on 19/05/2020 retrospectively registered.

Keywords: Acute kidney injury; Cardio-renal syndrome; Congestive heart failure; Diuresis; Diuretics.

Conflict of interest statement

the authors declare no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT diagram of allocation groups
Fig. 2
Fig. 2
Primary endpoint Renal function recovery (sCr return to baseline value) in 80 patients with CRS1 according to allocation groups
Fig. 3
Fig. 3
Secondary endpoint in 80 patients with CRS1 according to allocation groups. 3.1) Change in urinary output (ml). 3.2) Change in A, urea; B, serum sodium; C, serum potassium and D, serum bicarbonate
Fig. 4
Fig. 4
Clinical evolution in 80 patients with CRS1 according to allocation groups. A) Dyspnea improvement, B) Renal replacement therapy, C) Intervention stopped because improvement and D) mortality
Fig. 5
Fig. 5
Exploratory analysis, changes in BNP (A) and copeptine levels (B) during the trial according to the allocation groups

References

    1. Viswanathan G, Gilbert S. The cardiorenal syndrome: making the connection. Int J Nephrol. 2011;2011:283137. doi: 10.4061/2011/283137.
    1. Virzì GM, Clementi A, Brocca A, de Cal M, Vescovo G, Granata A, et al. The hemodynamic and nonhemodynamic crosstalk in cardiorenal syn rome type 1. Cardiorenal Med. 2014;4(2):103–112. doi: 10.1159/000362650.
    1. Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, et al. Acute Kidney Injury in Cardiorenal Syndrome Type 1 Patients: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2016;6(2):116–128. doi: 10.1159/000442300.
    1. Ganda A, Onat D, Demmer RT, Wan E, Vittorio TJ, Sabbah HN, et al. Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep. 2010;7(2):66–74. doi: 10.1007/s11897-010-0009-5.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37:2129–U2130. doi: 10.1093/eurheartj/ehw128.
    1. Mentz RJ, Kjeldsen K, Rossi GP, Voors AA, Cleland JG, Anker SD, et al. Decongestion in acute heart failure. Eur J Heart Fail. 2014;16(5):471–482. doi: 10.1002/ejhf.74.
    1. Knauf H, Mutschler E. Pharmacodynamic and kinetic considerations on diuretics as a basis for differential therapy. Klin Wochenschr. 1991;69(6):239–250. doi: 10.1007/BF01666849.
    1. Butler J, Anstrom KJ, Felker GM, Givertz MM, Kalogeropoulos AP, Konstam MA, et al. Efficacy and safety of spironolactone in acute heart failure: The ATHENA-HF randomized clinical trial. JAMA Cardiol. 2017;2(9):950–958. doi: 10.1001/jamacardio.2017.2198.
    1. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–1539. doi: 10.1016/j.jacc.2008.07.051.
    1. Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 2013 Feb;17(1):204.
    1. Martens P, Nijst P, Mullens W. Current Approach to Decongestive Therapy in Acute Heart Failure. Curr Heart Fail Rep. 2015;(6):367–78.
    1. Andrassy KM. Comments on 'KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease'. Kidney Int. 2013;84(3):622–623. doi: 10.1038/ki.2013.243.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O'Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–2304. doi: 10.1056/NEJMoa1210357.
    1. Cobos-Carbó A, Augustovski F. CONSORT 2010 Declaration: updated guideline for reporting parallel group randomised trials. Med Clin. 2011;137(5):213–215. doi: 10.1016/j.medcli.2010.09.034.
    1. Frea S, Pidello S, Volpe A, Canavosio FG, Galluzzo A, Bovolo V, et al. Diuretic treatment in high-risk acute decompensation of advanced chronic heart failure-bolus intermittent vs. continuous infusion of furosemide: a randomized controlled trial. Clin Res Cardiol. 2020;109(4):417–425. doi: 10.1007/s00392-019-01521-y.
    1. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805. doi: 10.1056/NEJMoa1005419.
    1. Ellison DH, Felker GM. Diuretic Treatment in Heart Failure. N Engl J Med. 2017;377(20):1964–1975. doi: 10.1056/NEJMra1703100.
    1. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–272. doi: 10.1161/CIRCULATIONAHA.109.933275.
    1. Rao VS, Ahmad T, Brisco-Bacik MA, Bonventre JV, Wilson FP, Siew ED, et al. Renal Effects of Intensive Volume Removal in Heart Failure Patients With Preexisting Worsening Renal Function. Circ Heart Fail. 2019;12(6):e005552. doi: 10.1161/CIRCHEARTFAILURE.118.005552.
    1. Griffin M, Rao VS, Fleming J, Raghavendra P, Turner J, Mahoney D, et al. Effect on Survival of Concurrent Hemoconcentration and Increase in Creatinine During Treatment of Acute Decompensated Heart Failure. Am J Cardiol. 2019;124(11):1707–1711. doi: 10.1016/j.amjcard.2019.08.034.
    1. Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH, et al. Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury. Circulation. 2018;137(19):2016–2028. doi: 10.1161/CIRCULATIONAHA.117.030112.
    1. Salah K, Kok WE, Eurlings LW, Bettencourt P, Pimenta JM, Metra M, et al. Competing Risk of Cardiac Status and Renal Function During Hospitalization for Acute Decompensated Heart Failure. JACC Heart Fail. 2015;3(10):751–761. doi: 10.1016/j.jchf.2015.05.009.
    1. McLellan J, Bankhead CR, Oke JL, Hobbs FDR, Taylor CJ, Perera R. Natriuretic peptide-guided treatment for heart failure: a systematic review and meta-analysis. BMJ Evid Based Med. 2020;25(1):33–37. doi: 10.1136/bmjebm-2019-111208.
    1. Felker GM, Mentz RJ. Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol. 2012;59(24):2145–2153. doi: 10.1016/j.jacc.2011.10.910.
    1. Rao VS, Planavsky N, Hanberg JS, Ahmad T, Brisco-Bacik MA, Wilson FP, et al. Compensatory Distal Reabsorption Drives Diuretic Resistance in Human Heart Failure. J Am Soc Nephrol. 2017;28(11):3414–3424. doi: 10.1681/ASN.2016111178.
    1. Ter Maaten JM, Rao VS, Hanberg JS, Perry Wilson F, Bellumkonda L, Assefa M, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur J Heart Fail. 2017;19(8):1014–1022. doi: 10.1002/ejhf.757.
    1. Brisco-Bacik MA, Ter Maaten JM, Houser SR, Vedage NA, Rao V, Ahmad T, et al. Outcomes Associated With a Strategy of Adjuvant Metolazone or High-Dose Loop Diuretics in Acute Decompensated Heart Failure: A Propensity Analysis. J Am Heart Assoc. 2018;7(18):e009149. doi: 10.1161/JAHA.118.009149.
    1. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol. 2015;10(1):135–146. doi: 10.2215/CJN.05760513.
    1. Vader JM, LaRue SJ, Stevens SR, Mentz RJ, DeVore AD, Lala A, et al. Timing and Causes of Readmission After Acute Heart Failure Hospitalization-Insights From the Heart Failure Network Trials. J Card Fail. 2016;22(11):875–883. doi: 10.1016/j.cardfail.2016.04.014.

Source: PubMed

3
Předplatit