Sugammadex: Appropriate Use in the Context of Budgetary Constraints

Guy Cammu, Guy Cammu

Abstract

Purpose of review: The purpose of this review is to assess how sugammadex impacts postoperative residual curarization using appropriate doses based on neuromuscular transmission monitoring and whether the advantages of sugammadex versus neostigmine outweigh its higher cost.

Recent findings: An accurate assessment of neuromuscular blockade with monitoring is necessary before selecting neostigmine versus sugammadex for reversal at the end of surgery to overcome incomplete neuromuscular recovery. The main advantages of sugammadex over neostigmine are its predictability and its ability to extend the range of blockade reversal. The cost of sugammadex is greater when higher doses of sugammadex are required for antagonism of deep block. Sugammadex probably has the potential to be cost-effective compared with neostigmine if its time savings are put to productive use in clinical practice. However, to date, the economic benefits of the drug are unknown.

Summary: With sugammadex, almost any degree of neuromuscular block can be antagonized within 2-3 min; neostigmine is the only reversal agent effective against benzylisoquinolines and can ideally be used for reversal of lower levels of residual paralysis. The performance of the more expensive sugammadex on improving patient outcomes may depend on several elements of clinical strategy.

Keywords: Neostigmine; Neuromuscular block; Pharmacoeconomics; Postoperative complications; Sugammadex.

Conflict of interest statement

Compliance with Ethical StandardsGuy Cammu received honoraria from MSD Company for lectures at scientific meetings on the use of neuromuscular blocking agents and reversal agents. He previously performed funded research on sugammadex and received research grants from MSD, which were paid into a research account of his employer, the Department of Anesthesia and Critical Care Medicine of the Onze-Lieve-Vrouw Ziekenhuis, Aalst, Belgium. He has served on the national advisory board on the introduction of sugammadex into clinical practice in Belgium. The author has no financial relationship with any organization or company that may have an interest in the submitted work. MSD had no role in this submitted work whatsoever.All reported studies/experiments with human or animal subjects performed by the author have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

    1. O’Reilly-Shah VN, Wolf FA, Jabaley CS, Lynde GC. Using a worldwide in-app survey to explore sugammadex usage patterns: a prospective observational study. Br J Anaesth. 2017;119:333–335. doi: 10.1093/bja/aex171.
    1. Wax DB, Schaecter J. Cost awareness among anesthesia practitioners at one institution. J Clin Anesth. 2009;21:547–550. doi: 10.1016/j.jclinane.2008.12.029.
    1. Brueckmann B, Sasaki N, Grobara P, Li MK, Woo T, de Bie J, Maktabi M, Lee J, Kwo J, Pino R, Sabouri AS, McGovern F, Staehr-Rye AK, Eikermann M. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth. 2015;115:743–751. doi: 10.1093/bja/aev104.
    1. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41:1095–1103. doi: 10.1111/j.1399-6576.1997.tb04851.x.
    1. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107:130–137. doi: 10.1213/ane.0b013e31816d1268.
    1. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111:120–128. doi: 10.1213/ANE.0b013e3181da832d.
    1. Butterly A, Bittner EA, George E, Sandberg WS, Eikermann M, Schmidt U. Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge. Br J Anaesth. 2010;105:304–309. doi: 10.1093/bja/aeq157.
    1. Stewart PA, Liang SS, Li QS, Huang ML, Bilgin AB, Kim D, Phillips S. The impact of residual neuromuscular blockade, oversedation, and hypothermia on adverse respiratory events in a postanesthetic care unit: a prospective study of prevalence, predictors, and outcomes. Anesth Analg. 2016;123:859–868. doi: 10.1213/ANE.0000000000001513.
    1. Bulka CM, Terekhov MA, Martin BJ, Dmochowski RR, Hayes RM, Ehrenfeld JM. Nondepolarizing neuromuscular blocking agents, reversal, and risk of postoperative pneumonia. Anesthesiology. 2016;125:647–655. doi: 10.1097/ALN.0000000000001279.
    1. Dimick JB, Chen SL, Taheri PA, Henderson WG, Khuri SF, Campbell DA., Jr Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program. J Am Coll Surg. 2004;199:531–537. doi: 10.1016/j.jamcollsurg.2004.05.276.
    1. Combes X, Andriamifidy L, Dufresne E, Suen P, Sauvat S, Scherrer E, Feiss P, Marty J, Duvaldestin P. Comparison of two induction regimens using or not using muscle relaxant: impact on postoperative upper airway discomfort. Br J Anaesth. 2007;99:276–281. doi: 10.1093/bja/aem147.
    1. Lundstrøm LH, Møller AM, Rosenstock C, Astrup G, Gätke MR, Wetterslev J. Danish Anaesthesia Database. Avoidance of neuromuscular blocking agents may increase the risk of difficult tracheal intubation: a cohort study of 103,812 consecutive adult patients recorded in the Danish Anaesthesia Database. Br J Anaesth. 2009;103:283–290. doi: 10.1093/bja/aep124.
    1. Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT, Ehrenfeld JM, Martinez EA, Kurth T, Eikermann M. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012;345:e6329. doi: 10.1136/bmj.e6329.
    1. McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M. Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology. 2015;122:1201–1213. doi: 10.1097/ALN.0000000000000674.
    1. Sasaki N, Meyer MJ, Malviya SA, Stanislaus AB, MacDonald T, Doran ME, Igumenshcheva A, Hoang AH, Eikermann M. Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes: a prospective study. Anesthesiology. 2014;121:959–968. doi: 10.1097/ALN.0000000000000440.
    1. Bronsert MR, Henderson WG, Monk TG, Richman JS, Nguyen JD, Sum-Ping JT, Mangione MP, Higley B, Hammermeister KE. Intermediate-acting nondepolarizing neuromuscular blocking agents and risk of postoperative 30-day morbidity and mortality, and long-term survival. Anesth Analg. 2017;124:1476–1483. doi: 10.1213/ANE.0000000000001848.
    1. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Vender JS, Parikh KN, Patel SS, Patel A. Residual neuromuscular block in the elderly: incidence and clinical implications. Anesthesiology. 2015;123:1322–1336. doi: 10.1097/ALN.0000000000000865.
    1. Hårdemark Cedborg AI, Sundman E, Bodén K, Witt Hedström H, Kuylenstierna R, Ekberg O, et al. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: effects on airway protection. Anesthesiology. 2014;120:312–325. doi: 10.1097/ALN.0000000000000043.
    1. Merck & Co Inc BRIDION: EPAR – Product Information Annex I: Summary of product characteristics European Medicines Agency; London, UK: 2013. Available from: .
    1. Reid JE, Breslin DS, Mirakhur RK, Hayes AH. Neostigmine antagonism of rocuronium block during anesthesia with sevoflurane, isoflurane or propofol. Can J Anaesth. 2001;48:351–355. doi: 10.1007/BF03014962.
    1. Vanacker BF, Vermeyen KM, Struys MM, Rietbergen H, Vandermeersch E, Saldien V, et al. Reversal of rocuronium-induced neuromuscular block with the novel drug sugammadex is equally effective under maintenance anesthesia with propofol or sevoflurane. Anesth Analg. 2007;104:563–568. doi: 10.1213/01.ane.0000231829.29177.8e.
    1. Eleveld DJ, Kuizenga K, Proost JH, Wierda JM. A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg. 2007;104:582–584. doi: 10.1213/01.ane.0000250617.79166.7f.
    1. Fuchs-Buder T. Less is not always more: sugammadex and the risk of under-dosing. Eur J Anaesthesiol. 2010;27:849–850. doi: 10.1097/EJA.0b013e32833dce3a.
    1. Jones RK, Caldwell JE, Brull SJ, Soto RG. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008;109:816–824. doi: 10.1097/ALN.0b013e31818a3fee.
    1. Blobner M, Eriksson LI, Scholz J, Motsch J, Della Rocca G, Prins ME. Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol. 2010;27:874–881. doi: 10.1097/EJA.0b013e32833d56b7.
    1. Fuchs-Buder T, Nemes R, Schmartz D. Residual neuromuscular blockade: management and impact on postoperative pulmonary outcome. Curr Opin Anaesthesiol. 2016;29:662–667. doi: 10.1097/ACO.0000000000000395.
    1. Brull SJ, Kopman AF. Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology. 2017;126:173–190. doi: 10.1097/ALN.0000000000001409.
    1. Kaufhold N, Schaller SJ, Stäuble CG, Baumüller E, Ulm K, Blobner M, Fink H. Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20 )†. Br J Anaesth. 2016;116:233–240. doi: 10.1093/bja/aev437.
    1. Aouad MT, Alfahel WS, Kaddoum RN, Siddik-Sayyid SM. Half dose sugammadex combined with neostigmine is non-inferior to full dose sugammadex for reversal of rocuronium-induced deep neuromuscular blockade: a cost-saving strategy. BMC Anesthesiol. 2017;17:57. doi: 10.1186/s12871-017-0348-9.
    1. Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, Gautam S, White DP, Chamberlin NL. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007;107:621–629. doi: 10.1097/01.anes.0000281928.88997.95.
    1. Cammu G, Schepens T, De Neve N, Wildemeersch D, Foubert L, Jorens PG. Diaphragmatic and intercostal electromyographic activity during neostigmine, sugammadex and neostigmine-sugammadex-enhanced recovery after neuromuscular blockade: a randomised controlled volunteer study. Eur J Anaesthesiol. 2017;34:8–15. doi: 10.1097/EJA.0000000000000543.
    1. Naguib M, Brull SJ, Johnson KB. Conceptual and technical insights into the basis of neuromuscular monitoring. Anaesthesia. 2017;72(Suppl 1):16–37. doi: 10.1111/anae.13738.
    1. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS, Nisman M. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology. 2008;109:389–398. doi: 10.1097/ALN.0b013e318182af3b.
    1. Donati F. Neuromuscular monitoring: what evidence do we need to be convinced? Anesth Analg. 2010;111:6–8. doi: 10.1213/ANE.0b013e3181cdb093.
    1. Thomsen JL, Nielsen CV, Eskildsen KZ, Demant MN, Gätke MR. Awareness during emergence from anaesthesia: significance of neuromuscular monitoring in patients with butyrylcholinesterase deficiency. Br J Anaesth. 2015;115(Suppl 1):i78–i88. doi: 10.1093/bja/aev096.
    1. Naguib M, Brull SJ, Arkes HR. Reasoning of an anomaly: residual block after sugammadex. Anesth Analg. 2013;117:297–300. doi: 10.1213/ANE.0b013e318292ee3c.
    1. Kotake Y, Ochiai R, Suzuki T, Ogawa S, Takagi S, Ozaki M, Nakatsuka I, Takeda J. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg. 2013;117:345–351. doi: 10.1213/ANE.0b013e3182999672.
    1. Naguib M, Johnson KB. Innovative disruption in the world of neuromuscular blockade: what is the “state of the art?”. Anesthesiology. 2017;126:12–15. doi: 10.1097/ALN.0000000000001410.
    1. Raft J, Millet F, Meistelman C. Example of cost calculations for an operating room and a post-anaesthesia care unit. Anaesth Crit Care Pain Med. 2015;34:211–215. doi: 10.1016/j.accpm.2014.11.002.
    1. Kopman AF. Neostigmine versus sugammadex: which, when, and how much? Anesthesiology. 2010;113:1010–1011. doi: 10.1097/ALN.0b013e3181f41847.
    1. Schaller SJ, Fink H, Ulm K, Blobner M. Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block. Anesthesiology. 2010;113:1054–1060. doi: 10.1097/ALN.0b013e3181f4182a.
    1. Kopman AF, Naguib M. Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg. 2015;120:51–58. doi: 10.1213/ANE.0000000000000471.
    1. Kopman AF, Naguib M. Is deep neuromuscular block beneficial in laparoscopic surgery? No, probably not. Acta Anaesthesiol Scand. 2016;60:717–722. doi: 10.1111/aas.12699.
    1. Meistelman C, Donati F. Do we really need sugammadex as an antagonist of muscle relaxants in anesthesia? Curr Opin Anaesthesiol. 2016;29:462–467. doi: 10.1097/ACO.0000000000000359.
    1. Donati F, Brull SJ. More muscle relaxation does not necessarily mean better surgeons or “the problem of muscle relaxation in surgery”. Anesth Analg. 2014;119:1019–1021. doi: 10.1213/ANE.0000000000000429.
    1. Monk TG, Rietbergen H, Woo T, Fennema H. Use of sugammadex in patients with obesity: a pooled analysis. Am J Ther. 2017;24:e507–e516. doi: 10.1097/MJT.0000000000000305.
    1. Baete S, Vercruysse G, Vander Laenen M, De Vooght P, Van Melkebeek J, Dylst D, et al. The effect of deep versus moderate neuromuscular block on surgical conditions and postoperative respiratory function in bariatric laparoscopic surgery: a randomized, double blind clinical trial. Anesth Analg. 2017;124:1469–1475. doi: 10.1213/ANE.0000000000001801.
    1. Gallagher SF, Haines KL, Osterlund LG, Mullen M, Downs JB. Postoperative hypoxemia: common, undetected, and unsuspected after bariatric surgery. J Surg Res. 2010;159:622–626. doi: 10.1016/j.jss.2009.09.003.
    1. Paton F, Paulden M, Chambers D, Heirs M, Duffy S, Hunter JM, Sculpher M, Woolacott N. Sugammadex compared with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation. Br J Anaesth. 2010;105:558–567. doi: 10.1093/bja/aeq269.
    1. Abad-Gurumeta A, Ripollés-Melchor J, Casans-Francés R, Espinosa A, Martínez-Hurtado E, Fernández-Pérez C, Ramírez JM, López-Timoneda F, Calvo-Vecino JM, Evidence Anaesthesia Review Group A systematic review of sugammadex vs neostigmine for reversal of neuromuscular blockade. Anaesthesia. 2015;70:1441–1452. doi: 10.1111/anae.13277.
    1. Bisschops MM, Holleman C, Huitink JM. Can sugammadex save a patient in a simulated ‘cannot intubate, cannot ventilate’ situation? Anaesthesia. 2010;65:936–941. doi: 10.1111/j.1365-2044.2010.06455.x.
    1. de Boer HD, van Esmond J, Booij LH, Driessen JJ. Reversal of rocuronium-induced profound neuromuscular block by sugammadex in Duchenne muscular dystrophy. Paediatr Anaesth. 2009;19:1226–1228. doi: 10.1111/j.1460-9592.2009.03178.x.
    1. Schepens T, Cammu G, Saldien V, De Neve N, Jorens PG, Foubert L, et al. Electromyographic activity of the diaphragm during neostigmine or sugammadex-enhanced recovery after neuromuscular blockade with rocuronium: a randomised controlled study in healthy volunteers. Eur J Anaesthesiol. 2015;32:49–57. doi: 10.1097/EJA.0000000000000140.
    1. Cammu GV, Smet V, De Jongh K, Vadeput D. A prospective, observational study comparing postoperative residual curarisation and early adverse respiratory events in patients reversed with neostigmine or sugammadex or after apparent spontaneous recovery. Anaesth Intensive Care. 2012;40:999–1006.
    1. Ledowski T, Falke L, Johnston F, Gillies E, Greenaway M, De Mel A, et al. Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal. Eur J Anaesthesiol. 2014;31:423–429. doi: 10.1097/EJA.0000000000000010.
    1. Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A, Arazo-Iglesias I, Gil-Bona J, Jimenez-Bernardó T, Muñoz-Rodriguez L. Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reverted with neostigmine versus sugammadex. Minerva Anestesiol. 2016;82:735–742.
    1. Ledowski T, Hillyard S, Kozman A, Johnston F, Gillies E, Greenaway M, Kyle BC. Unrestricted access to sugammadex: impact on neuromuscular blocking agent choice, reversal practice and associated healthcare costs. Anaesth Intensive Care. 2012;40:340–343.

Source: PubMed

3
Předplatit