Sigh maneuver to enhance assessment of fluid responsiveness during pressure support ventilation

Antonio Messina, Davide Colombo, Federico Lorenzo Barra, Gianmaria Cammarota, Giacomo De Mattei, Federico Longhini, Stefano Romagnoli, Francesco DellaCorte, Daniel De Backer, Maurizio Cecconi, Paolo Navalesi, Antonio Messina, Davide Colombo, Federico Lorenzo Barra, Gianmaria Cammarota, Giacomo De Mattei, Federico Longhini, Stefano Romagnoli, Francesco DellaCorte, Daniel De Backer, Maurizio Cecconi, Paolo Navalesi

Abstract

Background: Assessment of fluid responsiveness is problematic in intensive care unit (ICU) patients, in particular for those undergoing modes of partial support, such as pressure support ventilation (PSV). We propose a new test, based on application of a ventilator-generated sigh, to predict fluid responsiveness in ICU patients undergoing PSV.

Methods: This was a prospective bi-centric interventional study conducted in two general ICUs. In 40 critically ill patients with a stable ventilatory PSV pattern and requiring volume expansion (VE), we assessed the variations in arterial systolic pressure (SAP), pulse pressure (PP) and stroke volume index (SVI) consequent to random application of 4-s sighs at three different inspiratory pressures. A radial arterial signal was directed to the MOSTCARE™ pulse contour hemodynamic monitoring system for hemodynamic measurements. Data obtained during sigh tests were recorded beat by beat, while all the hemodynamic parameters were averaged over 30 s for the remaining period of the study protocol. VE consisted of 500 mL of crystalloids over 10 min. A patient was considered a responder if a VE-induced increase in cardiac index (CI) ≥ 15% was observed.

Results: The slopes for SAP, SVI and PP of were all significantly different between responders and non-responders (p < 0.0001, p = 0.0004 and p < 0.0001, respectively). The AUC of the slope of SAP (0.99; sensitivity 100.0% (79.4-100.0%) and specificity 95.8% (78.8-99.9%) was significantly greater than the AUC for PP (0.91) and SVI (0.83) (p = 0.04 and 0.009, respectively). The SAP slope best threshold value of the ROC curve was - 4.4° from baseline. The only parameter found to be independently associated with fluid responsiveness among those included in the logistic regression was the slope for SAP (p = 0.009; odds ratio 0.27 (95% confidence interval (CI95) 0.10-0.70)). The effects produced by the sigh at 35 cmH20 (Sigh35) are significantly different between responders and non-responders. For a 35% reduction in PP from baseline, the AUC was 0.91 (CI95 0.82-0.99), with sensitivity 75.0% and specificity 91.6%.

Conclusions: In a selected ICU population undergoing PSV, analysis of the slope for SAP after the application of three successive sighs and the nadir of PP after Sigh35 reliably predict fluid responsiveness.

Trial registration: Australian New Zealand Clinical Trials Registry, ACTRN12615001232527 . Registered on 10 November 2015.

Keywords: Fluid responsiveness; Functional hemodynamic assessment; Pressure support ventilation; Sigh maneuver.

Conflict of interest statement

Ethics approval and consent to participate

The study was performed in the ICUs of two University Hospitals (Novara and Florence) after approval of the institutional ethics committees, in accordance with the principles of the Declaration of Helsinki. Patient’s written consent was managed as indicated by the ethics committees.

Consent for publication

Not applicable.

Competing interests

Dr. Romagnoli received speaking fees and travel expenses for scientific meetings from Vygon. Dr. Messina received travel expenses for scientific meetings from Vygon.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schematic illustration of pulse pressure (PP) and stroke volume index (SVI) variations after Sigh35 in one responder. The solid line with squares indicates PP and the dotted line with circles depicts SVI. Baseline_1 corresponds to the 20 heartbeats preceeding Sigh35, which starts at heartbeat number 20, as indicated by the dotted vertical line. Nadir values of PP and SVI are indicated by the larger square and circle, respectively. Both PP and SVI dropped after application of Sigh35
Fig. 2
Fig. 2
Slope calculation of responders (blue line) and non-responders (red line) of systolic arterial pressure (SAP). The blue triangles and the red circles represent the mean values of the two populations (responders and non-responders, respectively) at each step of the protocol. The AUC for the slope of SAP (0.99; sensitivity 100.0% (79.4–100.0%) and specificity 95.8% (78.8–99.9%)) was significantly greater than the AUCs for PP (0.91) and SVI (0.83) (p = 0.04 and 0.009, respectively). The SAP slope best threshold value of the ROC curve was − 4.4° from baseline

References

    1. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111.
    1. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, Della Rocca G, Aldecoa C, Artigas A, Jog S, Sander M, Spies C, Lefrant JY, De Backer D, Investigators F, Group ET Fluid challenges in intensive care: the fenice study: a global inception cohort study. Intensive Care Med. 2015;41:1529–1537.
    1. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part i: Basic concepts. Intensive Care Med. 2009;35:45–54.
    1. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part ii: Practical implications in critical care. Intensive Care Med. 2009;35:198–205.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–2647.
    1. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–523.
    1. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, Veber B, Paugam-Burtz C, Jaber S, Ayham A, Zogheib E, Lasocki S, Vieillard-Baron A, Quintard H, Joannes-Boyau O, Plantefeve G, Montravers P, Duperret S, Lakhdari M, Ammenouche N, Lorne E, Slama M, Dupont H. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112:681–685.
    1. Pinsky MR. Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med. 2004;30:1008–1010.
    1. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–1650.
    1. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–676.
    1. Messina A, Colombo D, Cammarota G, De Lucia M, Cecconi M, Antonelli M, Corte FD, Navalesi P. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness. J Crit Care. 2015;30:1067–1071.
    1. Hadian M, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care. 2007;13:318–323.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–1407.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–956.
    1. Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care. 2008;14:334–339.
    1. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C, Bello G, Maviglia R, Antonelli M. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–1483.
    1. De Backer D. Can passive leg raising be used to guide fluid administration? Crit Care. 2006;10:170.
    1. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–663.
    1. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19:18.
    1. Patroniti N, Foti G, Cortinovis B, Maggioni E, Bigatello LM, Cereda M, Pesenti A. Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology. 2002;96:788–794.
    1. Monnet X, Chemla D, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med. 2007;35:477–482.
    1. Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39:1025–1033.
    1. Scolletta S, Franchi F, Romagnoli S, Carla R, Donati A, Fabbri LP, Forfori F, Alonso-Inigo JM, Laviola S, Mangani V, Maj G, Martinelli G, Mirabella L, Morelli A, Persona P, Payen D, Pulse wave analysis Cardiac Output validation Group Comparison between Doppler-echocardiography and uncalibrated pulse contour method for cardiac output measurement: a multicenter observational study. Crit Care Med. 2016;44:1370–1379.
    1. Romagnoli S, Ricci Z, Quattrone D, Tofani L, Tujjar O, Villa G, Romano SM, De Gaudio AR. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18:644.
    1. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–1040.
    1. Monnet X, Bleibtreu A, Ferre A, Dres M, Gharbi R, Richard C, Teboul JL. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40:152–157.
    1. Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–1701.
    1. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–421.
    1. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, Zoric L, Suehs C, de La Coussaye JE, Molinari N, Lefrant JY, AzuRea G. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: The mini-fluid challenge study. Anesthesiology. 2011;115:541–547.
    1. McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367:2233–2239.
    1. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Penuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguia C, Violi DA, Thille AW, Brochard L, Gonzalez M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D'Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bulow HH, Zeggwagh AA, Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188:220–230.
    1. Depret F, Jozwiak M, Teboul JL, Alphonsine JE, Richard C, Monnet X. Esophageal Doppler can predict fluid responsiveness through end-expiratory and end-inspiratory occlusion tests. Crit Care Med. 2018. 10.1097/CCM.0000000000003522.
    1. Jozwiak M, Depret F, Teboul JL, Alphonsine JE, Lai C, Richard C, Monnet X. Predicting fluid responsiveness in critically ill patients using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–e1138.
    1. Georges D, de Courson H, Lanchon R, Sesay M, Nouette-Gaulain K, Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study. Crit Care. 2018;22:32.
    1. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–7.
    1. Freitas FG, Bafi AT, Nascente AP, Assuncao M, Mazza B, Azevedo LC, Machado FR. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies. Br J Anaesth. 2013;110:402–408.
    1. Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–480.
    1. Myatra SN, Monnet X, Teboul JL. Use of ‘tidal volume challenge’ to improve the reliability of pulse pressure variation. Crit Care. 2017;21:60.
    1. Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P. Assessing fluid-responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg. 2005;100:942–945.
    1. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth. 2005;95:746–755.
    1. Trepte CJ, Eichhorn V, Haas SA, Stahl K, Schmid F, Nitzschke R, Goetz AE, Reuter DA. Comparison of an automated respiratory systolic variation test with dynamic preload indicators to predict fluid responsiveness after major surgery. Br J Anaesth. 2013;111:736–742.
    1. Chan CM, Klinger JR. The right ventricle in sepsis. Clin Chest Med. 2008;29:661–676.
    1. Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, Nouette-Gaulain K. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–267.
    1. Lansdorp B, Hofhuizen C, van Lavieren M, van Swieten H, Lemson J, van Putten MJ, van der Hoeven JG, Pickkers P: Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions*. Crit Care Med 2014;42:1983–1990.
    1. Preisman S, DiSegni E, Vered Z, Perel A. Left ventricular preload and function during graded haemorrhage and retranfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth. 2002;88:716–718.
    1. Biais M, Cottenceau V, Stecken L, Jean M, Ottolenghi L, Roullet S, Quinart A, Sztark F. Evaluation of stroke volume variations obtained with the pressure recording analytic method. Crit Care Med. 2012;40:1186–1191.
    1. Messina A, Longhini F, Coppo C, Pagni A, Lungu R, Ronco C, Cattaneo MA, Dore S, Sotgiu G, Navalesi P. Use of the fluid challenge in critically ill adult patients: a systematic review. Anesth Analg. 2017;125:1532–1543.
    1. Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M. Pharmacodynamic analysis of a fluid challenge. Crit Care Med. 2016;44:880–891.

Source: PubMed

3
Předplatit